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PROLOGUE

by

Emanuel Parzen

Institute of Statistics
Texas A&M University

This Ph.D. thesis is an important contribution to a new dimension to

I statistical reasoning for which I proposa the name FUN STAT (because it is

fun; functional (useful); based on functional analysis; estimates functions;

and graphs functions). FUN.STAT has three important components: quantile

and density-quantile signatures of populations, entropy and information

measures, and functional inference.

The joint density quantile function of (X,Y) where X and Y are jointly

continuous random variables can be represented

fQx y(ul,u 2) fX,Y(Qx(u), Qy(u 2)) - fQx(ud)fQy(u2 )d(ul,u 2)

I in terms of the marginal density-quantile functions fQx(u), fQy(u), and the

I dependence density d(ui,u 2 ). How these three functions can be semi-

automatically estimated, by autoregressive or exponential model estimators

I with maximum entropy properties, is investigated in this thesis. The results

provide important and useful procedures for nonparametric bivariate density

estimation. The thesis discusses estimators of the entropy H(d) of ul2)

which seem to me to be Important because they can be applied to provide a

useful quality-index for projection-pursuit data analysis methods.

* ii
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1. INTRODUCTION

1.1 The Problem

Much of statistical analysis revolves around the

interrelationship between random variables. One may explore cause and

effect relationships, investigate the covariance structure of a

collection of random variables, or attempt to discover the underlying

probability mechanism that produces a vector of random variables. The

areas of regression and correlation analysis, analysis of variance,

categorical data analysis, and the general area of multivariate

analysis attempt to confront some of the relevant problems in dealing

with relationships among random variables. Mathematical tools from

probability theory and the theory of vector spaces assist in analyzing

the abstract problem, but one must also overcome computational

difficulties that arise from examining discrete observations from a

continuous multivariate distribution. The esoteric nature of

statistical analysis results from the wide range of mathematical and

computational tools that must be employed in solving general data

analytic problems. In this work we attempt to consolidate a variety

of such tools to provide a solid base from which to attack the general

problem of multivariate data analysis. We have chosen bivariate data

modeling as the logical starting point, and that is the primary

subject of this thesis; however, multivariate generalizations will be

This dissertation will follow the format for the Journal of the
American Statistical Association.

'1
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suggested whenever appropriate.

In its most general form. the problem is to infer from a

bivariate random sample {(Xi.Yi), i-l.....n} the nature of the joint

cumulative distribution function (c.d.f.)

I
a

F XY(x, y) - P (Xix, Y:y)

and the marainal cumulative distribution functions .1
Fx(x) - P(XSx) , F y(y) - P(YSy)..J

Knowledge of these entities will answer most of the questions posed in

regression and correlation analysis, but more generally, information

will be provided about the dependence structure between the random j
variables X and Y. The theory of parametric inference is based on

assumptions concerning these functions, but one is still faced with

the problem of testing these assumptions. We will emphasize the ]
problem of determining the dependence structure between two random

variables, but our approach will lead to solutions to more general j
problems of bivariate data analysis.

A specific application will be to provide techniques for testing 11
the null hypothesis

H0 : X and Y are independent f

against some suitable alternative. Many useful techniques already 0

-
t . _ .-. - .. ° -., ; " " ," : V T '/ - -U
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exist for handling this problem, but often such techniques carry

restrictive assumptions or demand too much computational complexity.

We will propose a general technique carrying few restrictions that is

computationally manageable and that suggests applications to other

areas of bivariate data modeling.

1.2 Survey of the Literature

A wide variety of sources exist from which to extract useful

information for attacking the problem of bivariate data analysis. For

general nonparametric measures of association, Lehmann (1966),

Blomqvist (1950), Blum, Kiefer, and Rosenblatt (1961), and Hoeffding

(1948) provide useful fundamental information. Puri, Sen, and Gokha!ei
(1970) and Parzen (1977) contain useful discussions of independence

tests in a multivariate setting. Classical normal theory is

exemplified in Morrison (1976) with more theoretical results appearing

in Kshirsagar (1972) and Rao (1973).

The approach we employ considers function approximation in a

nonparametric setting using information measures. References on

nonparametric density estimation are provided by Rosenblatt (1956),

Parzen (1962), Cacoullos (1966), Loftsgaarden and Quesenberry (1965),

Kronmal and Tartar (1968), Tartar and Kronmal (1970,1976), Crain

(1974), Carmichael (1976), and Good and Gaskins (1980). General

expository and bibliographic sources are provided by Tapia and

Thompson (1978), Bean and Tsokos (1980), Wertz (1978), and Sil verman

,(1980). For the mathematical theory of function approximations,

• -.- I i• • '____________



4

Lanczos (1956). RainvilIe (1960), Davis (1975), and Powell (1981) are

useful texts. Loeve (1977). Hewitt and Stromberg (1965), and Royden

(1968) contain some results from functional analysis that may also be

applied to this problem in a measure space setting. Parzen

(1959,1961) also contains some useful function space results in a

statistical setting. Shannon (1948) and Kullback (1978) are the

fundamental references for information theory.

The motivation for much of this research is provided by Parzen

(1977,1979), Kimeldorf and Sampson (1975b), Crain (1974), and Tartar

and Kronmal (1970). The quantile domain approach to statistical data t
modeling found in Parzen (1979b) provides some useful solutions that

can be extended to bivariate data analysis, with Kimeldorf and Sampson J
(1975b) providing some useful bivariate theory to apply to the

problem. The orthogonal expansion technique as a method of I
nonparametric density estimation seems to be the best suited for j
multivariate extension of univariate methods. The ideas of Crain

(1974) and Tartar and Kronmal (1970) motivate the development of a

modification of their techniques based on a general regression

framework using information theoretic notions. I
Scott, et al. (1978), employ the bivariate kernel method to a I

set of coronary heart disease data. Tartar and Silvers (1975) apply

orthogonal expansion techniques to the problem of bivariate Gaussian 1

mixture decompositions. These applications suggest a need for a more

objective and less cumbersome approach to the problem of diagnosing ]
the shape of a bivariate density, which motivates the applications

considered in the present work. 1

I



j Finally, Csorgo and Revesz (l1ql), Serfling (1980), and Randles

I and Wolfe (1979) provide comprehensive accounts of the relevant

j asymptotic distribution theory for many of the fundamental statistics.

I
I
I

II

I
iI

I

I
I
I
I
I
I
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2. MATHEMATICAL AND STATISTICAL FUNDAMENTALS

2.1 Introduction

The approach to bivariate data modeling that we will develop in

Chapter 4 is motivated by three concepts: 1) the use of quantile

based data analytic tools; 2) the use of information and entropy I
criterion functions; and 3) the application of some powerful results

from approximation theory. This chapter provides expository

information on these subjects along with a few remarks and J
observations that may not be found in the literature. An additional

section is included describing some elements of stochastic processes j

and complex regression applicable to the models employed in Chapter 4.

We have assumed knowledge of basic mathematical statistics similar to I
that found in Rao (1973).

2.2 Uniform Representations and the Probability Integral Transform ]

In this section we introduce concepts of probability modeling set

in the quantile doma;n, i.e., a domain of consideration in which the

_ _ _ _ II,
quantile function is the fundamental entity. The foundation of much

of the theory will be directly or indirectly related to the

probability integral transform which makes the quantile approach so

appealing. f
Let X be a random variable (r.v.) with c.d.f. F and probability

density function (p.d.f.) f. Define the auantile function Q(u) of X

_ _ _ _ _ _ _ |i i
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by

V~u) =F-M u)i nf [x: F (x) >u},O-<u<g1. (2.2.1I)

When two or more r.v.'s are considered, one affixes a subscript and

denotes Q u) as the quantile function of X, etc. This definition of

a quantile function yields a result known as the correspondence

identity, namely

F(x)-u iff Q(u)Sx. (2.2.2)

(The expression iff is the commonly used mathematical abbreviation for

"if and only if".) When F is continuous, one has the inverse identityII
FQ(u) - F(Q(u)) - u. (2.2.3)

Differentiating the inverse identity, one obtains the reciprocal

identity

fQ(u)q(u) 1 1. (2.2.4)

f The notation fQ(u) refers to the density-guantile function defined to

be the composite function f(Q(u)). One also has the quantile-density

function q(u) defined to be the derivative of the quantile 'unction. *,

Another useful function is the negative of the derivative of fr ,),

I often called the score function, given by

I-I

-. II .I ... . .. ,
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J

J(u) -f'Q(u) q(u). (2.2.5)

The score function is usually written

J(u) - -fQ(u)/fQ(u). (2.2.6) j

Randles and Wolfe (1979b) call J(u) the optimal score function. One

application for J(u) involves the concept of information. Consider a

form of Fisher's information,

r
I(f) - log f(x)]2 f(x) dx

2 1)

f-,, x) 12 dx f IJ(u) Idu. (2.2.7)
f-0_= ff(X) dx 0

Thus, this information measure requires only knowledge of the score I
function. For Shannon entropy, the density-quantile function is the

fundamental object, namely

H (f) - -log f (x) If (x) dx

f -log fQ(u) du. (2.2.8)
0

With the quantile building blocks considered above, one may now

state two fundamental theorems that will be exploited later.

Theorem 2.2.1 Let the r.v. U be distributed uniformly on the U

~U

IU
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interval [0,1), and let F be a c.d.f. Define the r.v. X by X-Q(U)

where Q is the quantile function associated with F. Then the c.d.f.

g of X is F.

Proof: P(Xgx)-P[Q(U):x] -P[U:F (x)]F (x) a

I Theorem 2.2.2 Let X be a r.v. with continuous c.d.f. F. Then

U-F(X) is a uniform r.v. on the interval [0,l] (in the proof, Q(u) is

the quantile function of X.)

I
Proof: P (Uzu) -P [F (X) Zu] -P [XZQ (u) ] P [X>Q (u)]

I - l-PCX:Q (u) ]-I-FQ (u) -I -u.a

Details using some of the aforementioned identities are omitted

I from the above proofs but may easily be supplied by the reader. The

transformation U-F(X) is called the Probability integral transform and

is very useful in attacking general problems in such a way that only I-

uniform distributions need be considered. The probability integral

I transform also reduces the general simulation problem to one of

simulating uniform [0,1] random variables. One calls U the uniform

representation of X. This terminology will become more meaningful in

1 the bivariate case. In the univariate case, any continuous random

variable has the same uniform representation. The usefulness occurs

I when results are invariant to the probability integral transform.

Moments may be considered in the quantile domain by applying some

1 of the results obtained above. Observe,

!" I
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- E(X) - E[Q(U) I= - Q(u) du (2.2.9)

from Theorem 2.2.1, and

02 - Var M EQ(u) -ul du. (2.2.10)

Another application involves transformations of the form Y-g(X)

where X has a known distribution. A common transformation is the

location-scale transformation

I
Y - P + oX. (2.2.11)

One is given Q x(u) and wishes to obtain Qy(U). Observe,

F y (y) SP (Y:y) -P (j+aXy) "P [Xs (y-1) /a] -F x E (y-11) /).]

Fy(y) > u iff Q(u) Sy

is equivalent to

FX[(y-1I)/0' Z u iff Qx(u) : (y-5)/o. I

Furthermore, 

IS

, {)I
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I
Hence, it follows that

Qy(U) P + Qx (u) • (2.2.12)

I One may seek similar results for general transformations Y-g(X). Let

g be a strictly increasing function. Then,

Fy (y) ,PYyj]PC g(X) Sy]-P[XSg -1 (y)J]iF Xg I (y) I

Again, the correspondence identity for Y is equivalent to

I FxEg-'(y)] I u i ff Qx(u) S g.(y)

i and

I
Qx(u) g"(y) iff gEQx(u)) < y.I

Thus,

Qy(u) g Qx (u) I (2.2.13)

Now,, suppose g is strictly decreasing. It follows readily that

Fy(y) -I F Eg- (y) I

The correspondence identity for Y is equivalent to

I
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F X[9-(y) s 1-u iff QX(I-u) a g-(y)

and 1

Qx (u) a g." (y) iff gcQX (1-u)J S y. J

Thus, _

QY(u) - gQX01-u)1. (2.2.14) .1
I

Parzen (1979b) considers the general problem of transformations of

random variables to specified distributions (such as normal) in light

of the above results.

bome useful extensions to these concepts may be applied to

goodness-of-fit (g.o.f.) procedures. If one defines D(u)-FQ(u) and

d(u)-D'(u,, these represent the c.d.f. and p.d.f. respectively of a

uniform (0,1) random variable. For a null hypothesis j
He: fQ(u)-foQo (u), Parzen (1979b) calls I

(u) - foQo(u)q(u)/ If Q (u)q(u)du (2.2.15)

the fjo transformation density which is a uniform (0.1) density under

the null hypothesis. The statistical applications of (2.2.15) will be

considered in section 3.5 in the discussion of autoregressive density

estimators. Parzen also discusses tail-exponents as a meani of

classifying distributions based on density-quantile representations. U

II

_ _- - n I. .. I - -
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The reader may consult Parzen (1979b) for more extensive results in

the univariate theory.

Some of the above ultivariate concepts extend readily to the

bivariate case. Let X and Y be continuous r.v.ls with joint c.d.f.

FX Y and marginals FX and Fy. Let the respective quantile functions

be denoted by QX and Qy. Define the dependence distribution function

D(u l ,u 2 ) by

O(U ,U2) - F X,Y(Qx(ul),Qy(u2)), OUlU2<1. (2.2.16)

Parzen (1977) calls O(u ,u 2 ) the regression distribution function,

while Kimeldorf and Sampson (1975b) call it the uniform representation

of FXy (xy). The dependence density d(u,,u2) is given by

z fxx,Y(Qx(Ul), Qy(u2))

d(ul,u 2) - D(ulu 2 ) = . (2.2.17)
au I au2  fx (Qx(ul))fy(Qy(u 2 ))

Note that while the univariate representations of the above objects

are related to the uniform (0,1) distribution and hence have

extensions to goodness-of-fit procedures, the dependence distribution

function and the dependence density have the added bivariate role of

detecting independence between two random variables, justifying the

name we have given them. Furthermore, they correspond to bivariate

r.v.ls distributed uniformly on the unit square only when X and Y are

independent, that is, D(ulu 2 )MUlU 2 end d(ul,u2 )-I if and only if X

and Y are independent. More general bivariate uniform distributions
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are considered by Kimeldorf and Sampson (1975b).

Since the bivariate normal distribution is usually the "null

hypothesis" distribution. one may be interested in the shapes of the

various functions of interest. Figure I depicts a bivariate standard

normal p.d.f. with the correlation coefficient equal to zero, while

Figure 2 shows the linear concentration of the probability mass when

the correlation coefficient is equal to .9. Figure 3 shows the

dependence density corresponding to Figure 2. while for the

independence case, the dependence density is a flat surface ]
identically equal to one. Figures 4 and 5 show the bivariate

density-quantile functions corresponding to Figures I and 2. Figures

3 through 5 have not been observed in the literature although they I
contribute insight into the relationships between the various

functions of interest.

One may establish an equivalence relation based on the above

uniform representation. Two bivariate distribution functions FX,Y and

GX,Y are said to be equivalent (written Fxy~GxY) if DF-DG where the j
subscript refers to the distribution for which the uniform

representation is defined. Thus, all bivariate distribution functions ]
of independent random variables are equivalent in this sense. The

following Theorem allows one to apply this concept to generating new ii

distributions with arbitrary prescribed marginals. Fl

Theorem 2.2.3 (Kimeldorf and Sampson, 1975b) Let FXy , G be

bivariate distribution functions with associated marginals Fx9 FYI and

Gx . Gy and corresponding quantile functions FXl , F l and Gi, . G.

(I)
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Then

FXY-GX Y iff GXy (xy)-X'y[F) G x(W),F" (y)]. (2.2.18)

Example 2.2.1 Let D(.) be the standard normal c.d.f. Then for pj

satisfying O<p<1,

F (x.y) - cT(x)(y) + [1- (x)I[1- (y)I

{(minE(I- ,(x)). (I-D(y)) ])P- 1} (2.2.19)

has standard normal marginals. This c.d.f. is derived using the

bivariate uniform c.d.f I
D(ul,u 2) - ulU 2 + (1-u1) (1-u2)

f(mini(l-u 1), (1-u2) 3)P -1) (2.2.20) j

and taking advantage of (2.2.18). Mardia (1970) discusses this c.d.f.

in connection with the bivariate exponential distribution proposed by

Marshall and Olkin (1967). I
Kimeldorf and Sampson (1975a) discuss one-parameter families of

bivariate distributions in light of Theorem 2.2.3. GXY of (2.2.18)

is called a (GXGy)-translate of FXY. Ideally, one-parameter [I
families of bivariate distributions exhibit a parameter that provides

UJ
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some measure of association between the random variables. Such is the

case for the one-parameter family of bivariate standard normal

distributions (i.e.,Iix -ap=O,Qx -a -1). Kimeldorf and Sampson base

their discussion on uniform representations of bivariate

distributions.

The uniform density d(u,,u2 ) defined by (2.2.17) also has

tapplications to regression problems. Using the definition of E(YIX),

one may write the equivalent expression

EEYIXmQx(u f 0 Qy(u 2)d(u,,u2 ) du 2  (2.2.21)

by using the change of variable X-Qx(UI ) and Y-Qy(U 2 ) where UI and U

are (possibly dependent) uniform (0,1) random variables. Equation

(2.2.21) justifies Parzen's use of the term regression density for

d(u1 ,u2). Furthermore, this representation suggests applications to

nonparametric regression which will be considered in Chapter 4.

One may also consider general quantile representations of

conditional probability functions. Corresponding to the conditional

c.d.f. FyIx (Yx) is a conditional quantile function Q Yx(ujx) defined

by (2.2.1). Parzen (1977) uses the usual change of variable to obtain

FYIX~y 0~ aU 2( ~pd (2.2.22)

where u2mFy (y). He then expresses Q yix(ulx) in terms of the

unconditional quantile function Q X(.) evaluated at an inverse

representation of the right hand side of (2.2.22). One would prefer a

I
I
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simpler expression conducive to estimation from sample data, but

Parzen suggests estimators for QYix whose properties remain to be

investigated. The value of the conditional quantile function is

illustrated in the following application.

To generate a univariate random sample of size n with specified

c.d.f. F, one generates a uniform random sample U .... Un and forms

X. M Q(U.) , iml .... n, (2.2.23)I I

where Q is the quantile function corresponding to F. Theorem 2.2.1

guarantees that the sample has common c.d.f. F. The extension of this

approach to the bivariate case, however, is not obvious. The usual

approach is to generate collections of random variables VV 2 ..... Vk

and form

X-g(V 1 ,V 2 ..... V k), Y'h(V I V2 ... ,Vk) (2.2.24)

so that the appropriate distribution theory guarantees that X and Y

have specified joint c.d.f. F This entails generating kn random f
variables to obtain 2n random variables. Furthermore, the V values

usually are transformed uniform values based on (2.2.23) so that the _

simulation problem becomes unreasonably complicated. In some cases, J
the appropriate distribution theory does not exist to generate the

desired random sample. To overcome this problem, one may develop a

general procedure based on the conditional quantile function.

Let U1 and U2 be independent uniform (0,l) random variables.1 2,
I

,



23

Specify joint c.d.f. FX Y and form

X=Qx(UI), Y-Qyix(U 2 1X) (2.2.25)

where the quantile functions correspond to the choice of c.d.f. FX,Y"

Then X and Y have specified joint c.d.f. F X,. To generate a sample

of size n, one merely generates two independent samples of uniform

random variables and uses (2.2.25) to form the corresponding bivariate

sample with c.d.f. F X,. Kennedy and Gentle (1980) consider a variety

I of techniques for generating uniform (0,1) random variables and

discuss the design of Monte Carlo experiments. Such techniques will

Ibe applied in Chapter 4.

One attempts to estimate the above quantities with statistics

I that possess desirable properties. An important sample object useful

g in developing statistics of interest is the empirical distribution

function (e.d.f.) F (x) defined by
nI

F x) - (1/n)(no. of data points :S x}. (2.2.26)
n

Formally, one assumes a collection X ,X ,...,X of i.i.d. r.v.'s,
1 2 n

i.e., a random sample of size n, and defines the empirical c.d.f.

g~ F(x) byn Y!

n
Fn(x) = (1/n) IA(Xi) (2.2.27)
nA

where A= (--,x] and

.. I
Ir
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I i f teA,

At) = (2.2.28)
0 if t9 A,

is the indicator function. One observes immediately that F (x)n

satisfies the properties of a c.d.f., i.e., nondecreasing. continuous j
from the right, O:F n(x)<1, F n(-o)-O, and Fn (oo),-. Furthermore, F n(x)

may be thought of as a stochastic process although presently attention

is paid to F (x) for fixed x.

We now briefly state some important properties of F (x). Letn

F(x) be the true population c.d.f. generating the data. Then

EEF (x) - F (x), Var[F (x) - F (x) Cl-F (x)I/n. (2.2.29)n n

Thus, F (x)-*F(x) as n-*= in quadratic mean, or F (x) is consistent in 3
mean square for estimating F(x).

The representation (2.2.27) also permits direct application of

the Strong Law of Large Numbers (SLLN) and the Central Limit Theorem -
(CLT). One notes that nFn(x) is exactly binomlally distributed with

parameters (n,F(x)) , which makes it easy to deduce that Fn(x) is U
strongly consistent for estimating F(x) and that Fn(x) suitably

standardized is asymptotically normally distributed. Note that these II
results pertain to the Pointwilse estimation of F(x) by Fn(x). Global

measures characterizing the "closeness" of Fn in approximating F may

be found in Durbin (1973) with important asymptotic results stated

therein.

The Lebesgue-StleltJes integral w.r.t. the empirical c.d.f. is I]

Ul
!m
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often employed to obtain method of moments estimates for the

corresponding population parameter. For example, for the parameter

defined by

Sfx dF(x), (2.2.30)
CO

the corresponding meth-d of moments estimator R may be represented byn

Xn f' x dFn (x). (2.2.31)| -wS I
This approach to obtaining estimators has many applications. Some of

Ithe information parameters of the next section will be estimated using

a ithis approach.

An empirical function fundamental to the quantile approach is the

I emirical quantile function given by

OQn(u) Fn (u) - inf{x: Fn x) ; u} (2.2.32)

I Upon closer inspection one realizes that (2.2.32) is equivalent to

qn(u) = X for (j-1)/n<usj/n, ji-,,.....n, (2.2.33)I
where X is the j-th order statistic of the random sample. Parzen

0)
(1979b) suggests that Qn (0) be taken to be a natural minimum when one

is available. If Q(u) is the true population quantile function, one

may define the sample qu ntile process by

I I Bi ili-- I IIi i i' .._ I

I . r .. - | . .. 1 I
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An (u) / n[Qn (u)-Qfu) I OSu-s. (2.2.34)

The following results may be found in Csirgo and Rgvesz (1981).

Theorem 2.2.4 Let u, O<u l, be given. Let F(x) be absolutely

continuous in an interval about Q(u), and let fQ(u) be positive and

continuous at u. Then as n-'.

fQ (u) A (u)//u-I=-TW d N (0, 1). (2.2.35) Jn

Theorem 2.2.5 Let Q(u) be continuous at u. Then as n-K,

Qn(u) ad" Q(u). (2.2.36)

Further results are given in Csorgo and Revesz (1981). Serfling

(1980) also provides similar results for the sampie quantile function.

More general results treat A (u) as a stochastic process and exhibit
n

the left hand side of (2.2.35) as converging in distribution to a ii
Brownian Bridge stochastic process. The definition of a Brownian H
Bridge is given in Section 2.5, but for now, one notes that the

results of Theorem 2.2.4 may be generalized to conclude ii

fQ(u)An(u) d 1(u), for &ll u, (2.2.37)

A
I.J
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where B(u) is a Brownian Bridge process.

One may prefer to use the piecewise linear definition of the

i sample quantile function given by

Q (u) - n[(j/n)-u]X(j-1) + n[u-(J-l)/ ]x(j),.

I (j-l)/nsu_<j/n,j- -.... n, (2.238)

or the shifted piecewise linear version

I
Q (u) - n[(j+.5)/n-u]X 0) + nu-(j-.5)/n]X 0+0)

(j-.5)/ngu:s(j+.5)/n,j-1,...,n. (2.2.39)

Using definition (2.2.39) suggests that the empirical quanti.le-density

be defined by

I
q n(u) - n(X(+ 1)x(j)), (j-.5)/n<u<(j+.5)/n, j-1,...,n-1. (2.2.40)

This definition of q (U) is the derivative of (2.2.39). For anydn
tdefinition of Q n(U) , one may take the corresponding qn(U) to be the

raw derivative

I q n(U) - [Qn(u+h)-Qn(u-h)I/(2h) O<u<l, (2.2.41)

I -where h-h(n) is some predetermined positive function of n. Bloch and

Ii
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.1

Gastwirth (1968) use (2.2.41) corresponding to Q (u) defined by
(2.2.33). Vasicek (1976) applies this definition to obtain the g.o.f.

test of normality discussed previously. Observe that for any well

defined q n(u), fQn (u)-l/q n(u) is an estimate of the density-quantile

function by virtue of the reciprocal identity. The g.o.f. statistic j
of Vasicek uses this fact to define the sample entropy discussed in

the next section.

A problem with the q n (u) estimates above is that they are not

necessarily consistent estimators of q(u). Hence, one usually seeks

'&smoothed" or corrected versions that yield nice asymptotic results.

One notes that often q(u) is not a function of interest except as it

is applied using the reciprocal identity. Thus, techniques for

estimating q(u) are employed and if estimates of fQ(u) are desired,

one then applies the reciprocal identity. The estimation of fQ(u)

will be considered in Chapter 3.

The bivariate functions of interest are F x,y(X,y), f x,y(X),

D(ulu 2), d(ul,u 2), and Q (ylx). Raw estimates of F X,y(x'Y) and-j

D(u],u 2) may be obtained analogously to the empirical c.d.f., i.e.,

defined with jumps of size 1/n at the points (Xi.,Y i) and 11
(Qi/(n+l),Ri/(n+l)) respectively, where Qi-rank(Xi) and Rirank(Yi).

Improved versions of these estimators will be considered in Chapters 3

and 4. Parzen (1977) suggests techniques for estimating Qy x(YlX) 11
based on raw estimates of O(u1,u,). This subject will be discussed

further in Chapter 4 in relation to several techniques of bivariate

density estimation. The asymptotic results for the bivariate case,

however, remain to be investigated. I
U
U
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2.3 Information and Entropy

The concept of statistical information or information numbers has

many useful applications in statistical analysis (Kullback, 1978, Rao,

1973). Fisher's information has been studied extensively and is of

primary importance in uniform minimum variance estimation and maximum

likelihood estimation. We will consider an alternative measure of

information proposed by Shannon (1948) and studied in a statistical

setting by Kullback (1978). The following definitions pertain to a

I measure of information and related concepts.

I Definition 2.3.1 The information I(f;g) between two densities

i f(x) and g(x) is given by

I I (f;g) f {I og Cf (x) /g (x)l f (x) dx. (2.3.1)

Definition 2.3.2 The entropy of a density f(x) is given by

t H(f) f [-log f(x)lf(x) dx. (2.3.2)

Definition 2.3.3 The cross-entropy between two densities f(x) and

g(x) is given by

I H(f;g) [- j®-Iog g(x) f(x) dx. (2.3.3)

One immediately notes that H(f)inH(f;f) and that

-I
I , .. , - m " - .. . ."'1 .. -----. . .V.. . - . .o ;

- 1
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I (f;g) = H(f;g) - H(f). (2.3.4)

Kullback (1978) proves the following fundamental the"-em.

Theorem 2.3.1 Let f(x) and g(x) be probability densities. Then

I(f;g) a 0 a.e. (2.3.5)

Equation (2.3.5) is called the information inequality. We will

exploit this inequality in constructing tests for independence between

two random variables.

Generally, information is considered as a "distance" between two

densities, although it is not a metric since it does not satisfy the

triangle inequality. If one wishes a symmetric measure of

information, one such definition is provided by

J(f;g) - I (f;g) + I (g;f). (2-3.6)

Observe, J

J(f;g) - Go [f(x)-g(x)] log[ (x)/g(x)] dx. (2.3.7) ii

Kullback calls J(f;g) the divergence between f and g.

One may also note that ii

(f;g) - Cf log f(X)) - EfIlog gx)) (2.3.8) I.
li

i m - , • -.. -- , . . . . " ' '.- . '5 ,L
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and that

H(f) I EfC-Iog f(X)]. (2.3.9)

These expectations need not be finite.

More general measures of information may also be developed.

Parzen (1982) discusses several general information measures, in

particular the bi-information given by

I I (f;g) -foollog[f (x)/g(X)] 12f (x) dx. (2.3.10)

f We will exploit this definition as an estimation criterion in Chapter

4.

IOur main application of information as a statistical measure will

g be to the problem of ascertaining whether twc random variables X and Y

are associated. For joint p.d.f. fXY and marginals fx' fY' one

obtains (see section 4.5)

I (f xY;fx f) -H(d) (2.3.11)

i where d is the dependence density for X and Y. One may then exploit

I (2.3.11) as a measure of dependence or association. Linfoot (1957) was

one of the first authors to consider information as a measure of

association between X and Y. Of primary importance, however, is the

fact that X and Y are independent if and only if I (f XY;f by

I virtue of the information inequality of Theorem 2.3.1.

I
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One may desire to emphasize the modeling of probability laws of

random variables by using the alternate notation

I (YIx) - I (fy;fyix). (2.3.12)

Using such notation it is easy to show that

I(Y -X) - H(Y) - H(YIX) (2.3.13)

where

H (YIx) - H (fYx). (2.3.14)

These results are readily applicable to regression and prediction

problems.

Information thus has a dual role in statistics being a parameter

of interest or a criterion function depending upon the setting for the ,

problem of interest. We will apply information criterion functions to

the problem of density estimation in section 4.4. The use of U

information as a dependence parameter will be investigated in section

4.5. Generally, information serves as a useful goodness-of-fit

criterion also. Consider the general Neyman-Pearson theory of

hypothesis testing. Recall, one rejects No: f(x)If (x) in favor of

H1 :f (x)if 1 (x) for specified cLif 

n n
f (X Z k 1[ fo(X), (2.3.15)Ii-I i-l

U



n n
_ f (X ))/1 f 0(X )]?kIH _(2.3.16)

Taking logarithms of (2.3.15) and simplifying, one obtains the

equivalent expression

n n
(1/n) I log f (X)- (1/n) I log f (X) 2: k , (2.3.17)

.01

i=l i=l

which can be written

H F (f I H F (f 0) Z k ,(2.3.18)
n n

where

HF (og k s e n (2.3.19)
n n

Another expression equivalent to (2.3.15) is

Fn (f 1;f) Z k (2.3.20)

n rn

* where

IF (f g) I J ogx -( fW/g(x) d F (x) , (2.3.21)

F n

n -O

Vasicek (1976) develops an entropy based test of normality with

n--j
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critical region defined by

Hn(fQn ) 5 H (m.n) (2.3.22)

where Hn(f Q) given by

^ n
H(fOn) - (l/n) l og{(n/2m)(X (i +m)-X i-m))} (2.3.23)

with X(i)=X(l )  for i<l and X(i)=X(n) for i>n, is the sample entropy

of a nearest neighbor estimate of the density-quantile function and

H (m,n) is the corresponding critical value for significance level a.
Budewicz and Van Der Meulen (1981) investigate power properties of

this procedure and conclude in simulation studies that the test is

compet tive with existing g.o.f. procedures. Vasicek shows that the .1
sample entropy is consistent for estimating H(f). A similar procedure

for the bivariate case will be considered in Chapter 4.

Since the bivariate normal is of special interest, we note that

the information between the joint p.d.f. and the product of the

marginals for this special case is given by U

I (f xY;fx f) - -. 5 log(1-PO) (2.3.24)

so that the information in this case is a function only of the

correlation coefficient p.

The parametric approach to statistical inference using

information theory, with emphasis on classical normal theory, has been
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studied extensively in the literature with Kullback (1978) providing a

fundamental reference. Only recently has information theory been

applied to nonparametric problems and exploratory data analysis. This

work attempts to contribute to the application of information theory

to such statistical problems.

1 2.4 Some Fundamental Concepts from Approximation Theory

I
Approximation theory has as its primary goal the approximation of

a function (or a graph or a curve). Several examples may illuminate

the need for such an approximation.I
Example 2.4.1 The error function defined by

X

erf W (2 /) f exp(-y2) dy (2.4.1)

1 cannot be obtained explicitly for specified x since the integral on

the right hand side of (2.4.1) cannot be simplified. Hence, one seeks

I to approximate erf(x) by approximating the integral for given x. One

i solution is to employ numerical integration techniques to approximate

erf(x). Statisticians are interested in this problem because the

U standard normal c.d.f. Cx) may be expressed by

1 $(x) * .5 + .5 erf(x// 2), x>O. (2.4.2)

, i
I
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Example 2.4.2 Let y(xt) represent the displacement of a tightly

stretched string at time t vibrating in the xy-plane. The analysis of

the problem of the vibrating string yields the differential equation

2y(xt) = k2  3y(x') (2.7.3)

also called the wave equation. A simple (closed form, finite)

expression for y(x,t) has not been obtained for specific boundary

conditions. One solution is to express y(x,t) as an infinite Fourier

series and truncate at a suitable order (see, e.g., Churchill, 1969).

These two examples depict a situation where an exact numerical

value cannot be obtained for a function at a specified point because

no "simple" expression for the function has been discovered.

Abramowitz and Stegun (1972) provide a useful reference for such

problems, especially when one seeks to obtain approximations with

specified bounds on precision. J

The following two examples depict settings in which approximation

theory and statistical estimation theory seem to become entwined.

Example 2.4.3 Given a set of bivariate data (XIY I) ....(XnYn),

the relationship

Yi = r(Xi,') + ci (2.4.4)

Is known to hold where r(',') is a specified function of X and

I
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h parameters8 6( ..... ek) and {i are i..i.d. r.v.'s with known

distribution. The function r(x,6) is known except for the

parameters. One seeks to approximate r by estimating the parameters

based on the sample data.I
Example 2.4.4 A set of data is generated by a probability

Imechanism.with probability density function f. If f is unknown, one

a seeks to approximate f based on the observations in the sample data.

Chapter 3 presents several solutions to this problem.

I
Example 2.4.3 illustrates how approximation theory and

statistical estimation theory compliment each other. However. Example

2.4.4 seems to be an exercise in statistical estimation alone. One

I may find it difficult to distinguish between the terms "approximation"

and "estimation". In this work, approximation theory will refer to

the concepts and theorems employed to approximate a function with

known mathematical properties. The approximation may be obtained by

rigorous mathematical arguments or by working with criterion functions

and sample data. Estimation theory, on the other hand, must always

resort to sample data and hence h~s a stochastic element not essential

I to approximation theory. In the context of Example 2.4.4, estimation

theory would treat f(x) as a "parameter" while approximation theory

would treat it as a function with specified properties. Any ambiguity

l !in the use of these terms should pose no serious obstacles in applying

them to problems of interest.

To approximate a function one usually must restrict f to belong

t 
_ _ A
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to a certain class of functions. Theory is then developed to

approximate functions in a given class. More generally, one may

consider a space of functions whose members possess certain

properties. The simplest class of functions might be the space of

constant functions, while one of the more complex classes might J

consist of measurable functions. To begin the study of approimating

elements in a space of functions, severvi concepts will be introduced

that will be useful in defining function spaces.

Definition 2.4.1 A metric space (Id) is a nonempty set A of

elements together with a real-valued function d:Ax/"R called a metric

that satisfies the following properties for all x.y,zeR:

i) d (xy) 20;

ii) d(x,y) -O iff x-y; .1
iii) d(x,y)-d(y,xI- and

i v) d (x, y) Sd (x, z) +d (z, y).

The function d is also called a distance, and property (iv) above is U
called the trianale ineguality because of its application to Euclidean

2-space with the metric d(xy)-Ix-yl.

Definition 2.4.2 A vector s.,ce (or jlirwr space) over the reels

is a set of elements (called vectors) V together with two operations![-

(functions) +:VxV-V and *:RxV0V which satisfy the following properties

'for al l x,yzeV n . weft:

7I|
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i
i) x+y-y+x;

Si i) +z-x+(y+z);

iii) there exists QEV such that x+6-x for all xcV;

iv) X(x+y)i = x+Xy;

v) (A+11) x-Xx+lix;

vi) X (px)-(XI)x; and

I vii) Ox- , lex-x.

I The set of real numbers in this setting is also called a set of

I scalars, hence in general one speaks of a vector space and a set of

scalars.I
Definition 2.4.3 A real-valued function I.II:V-R defined on a

I vector space V is called a norm if the following properties are

satisfied for all x,yEV and XER:

I i) flxIIZO;

ii) I1xII-O iff x-e;

If ii) Ij+yjjSlNI+jIfr; and

iv) IIXxIjllXl 1x I1I

A vector space that possesses such a norm is called appropriately

enough a normed vector space.

I
One immediately notes that d(xy).IIx-yII defines a metric and

I hence a normed vector space is also a metric space. The concept of a

I



40

distance measure or metric gives one a firm grasp on many abstract

concepts.

Definition 2.4.4 Let {xn} be a sequence of vec.ars in a normed

vector space V with norm 11-I1. The sequence {xnJ is called a Cauchy

sequence if for given E>O, there exists an N such that for all n2-N and

Definition 2.4.5 A normed vector space V is said to be complete -.

if all Cauchy sequences converge, i.e., if {xn I is a Cauchy sequence,
nI

then there exists xeV such that lim xn -x. A complete normed vector

space is called a Sangch space. I

Definition 2.4.6 A set H is called an inner product space if it

is a vector space and if there exists a real-valued function

( . ):HxH R called an inner product that satisfies the following

properties for all x,y,z H and all XER:

i) (Xx,y) 'X(x,y); U
ii) (x+y,z)=(x,z)+(y,z) ;

iii) (xy)-(y,x); and Ii
iv) (xx)>O if xwae.

One may permit the inner product to be complex valued. i.e.,

(.,.):HxH-C. in which case property (iii) above becomes

I _
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iii) (xy)-T---,X

where z is the complex conjugate of z. Note that lxII2-(x,x) defines a

norm so that an inner product space is also a normed vector space.

Definition 2.4.7 A complete inner product space is called a

Hilbert sace. (Some authors, e.g., Davis, 1975, give a more

restrictive definition of a Hilbert space, but this definition seems

fairly standard in the literature. See, e.g., Lo&ve, 1977, Royden,

1968, or Hewitt and Stromberg, 1965.)

When one moves down the hierarchy of spaces defined above, the

transition from inner product to norm to metric will be understood to

t follow the convention given unless otherwise noted. The hierarchy is

Iemphasized as follows:

Hilbert space - Banach space - normed vector space - metric space.

3 While restricting functions to belong to a Hilbert space may seem

severe, one will soon discover that many functions of statistical

importance fit nicely into a special class of Hilbert spaces called

3 the L spaces.

3Theorem 2.4.1 Let H be a Hilbert space with inner product(,).

Then for any x,ycH,1

---!-~-
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(X.Y) :5 ilxI1 lyll. (2.4.5)

The inequality (2..5) is known as the Cauchy-Schwarz inequality.

Example 2.4.5 For two random variables X and Y possessing finite

second moments, Cov(X,Y) is an inner product. Thus, ' )-VCov(XX)

is a norm, and hence

Cov(XY) < /Var(X) Var(Y). (2.4.6)

This is the common statistical version of the Cauchy-Schwarz

inequality.

Definition 2.4.8 Let H be a Hilbert space with inner product

(',') and let xyEH. One says that x and y are orthogonal if

(xy)-O. A set ScH is called an orthogonal system if for all distinct

elements x,ycS, (x,y)-O. Furthermore, if x -1 for all xcS, S is

called an orthonormal syStem.

Remark 2.4.1 If H is separable (see, e.g., Royden, 1968). then

every orthonormal system in H must be countable. This work will need

only consider separable Hilbert spaces. Theorem 2.4.3 below will

illustrate why.

Definition 2.4.9 Let H be a senarable Hilbert space and let

( k-I be an orthonorm.l system in H. The Fourier coofficients

'2

p A 
-

-' . I -
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w.r.t. {okI of an element xEH are defined by

I k = (K, k). (2.4.7)

I
Theorem 2.4.2 Let H be a separable Hilbert space and [kk-i be

the Fourier coefficients w.r.t. {Oklk1 l of an element xcH. Then

~ 62 11112.(2.4.8)
k-I

This is known as Bessel's inequality.

Deinition 2.4.10 Let H be a separable Hilbert space and let

{kk-Il be an orthonormal system in H. If (X,dk)-O for all k implies

I that x-E (here 0 is the identity element), then {O k}-I is said to

be a complete orthonormal system.

f The justification for the term "complete" becomes evident in the

following theorem. Royden (1968, p. 212) also gives motivation for

I this usage.

Theorem 2.4.3 Let H be a separable Hilbert space. Then every

orthonormal system in H is countable and there exists a complete

orthonormak system. If I is any complete orthonormal system in

H and xcH, then

r
I I
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x I ekOk (2.4.9)k=l e~

where 9ka(x, k). Equation (2.4.9) is said to be the Fourier series
m

representation of x and specifically means limix- 00kkl<1o.
M-W k=l

Remark 2.4.2 Every complete orthonormal system in a separable

Hilbert space has the same number of elements. This number is called

the dimension of H.
i

Remark 2.4.3 If the dimension of H is finite, then H is a finite

dimensional vector space and any complete orthonormal system in H is a

basis for H. One may also consider countably infinite basis sets if

desired, in which case any complete orthonormal system in H is a basis

for H. The Gramm-Schmidt orthonormalization process (see, e.g..

Hewitt and Stromberg, 1965, pp. 240-242) permits construction of an

orthonormal system given any basis set for a vector space.

Remark 2.4,4 In the context of Theorem 2.4.3, it follows that for

fiilk'~ ~ (2.4.10)
k=1

This is known as Parseval's iden.ity.

Theorem 2.4.3 provides the foundation for many useful expansion

techniques used to approximate a function of interest. One need only

I-
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decide upon an appropriate orthonormal system in a Hilbert space of

functions to construct an approximation based upon equation (2.4.9).

First, however, an appropriate Hilbert spacE must be identified that

contains functions of interest.

Definition 2.4.11 A (Lebesgue) measurable function f is said to

belong to the space Lp (a,b) if

I/f 1P (xb pd )}/ < 00(2.4.11)

for ISp<I
If one defines an inner product between two functions f and g by

b
(f,g) - f f(x) W g~x dx, (2.4.12)

I a

where gTRT is the complex conjugate of g(x), then the corresponding

norm is given byI
(b

tI=ll" If(x)lldx (2.4.13)Ia

I It can be shown that L2(a,b) is a separable Hilbert space, and hence

Theorem 2.4.3 applies for functions in L2(a.b). Let {(p(x)}kCO be a

complete orthonormal system in L (a,b). Then for fEL 2 (a,b), equation

(2.4.9) becomes

I
I
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f Wx Okck(x)(2.1)
k=1

where

8k (f Ok) f f~x ~(x) dx (2.4.15)
a

are the Fourier coefficients w.r.t. {Ok(x)l.

Now, suppose one wishes to approximate a function fELa(a,b) by a

suitable finite expression. One solution is to chose the truncated

Fourier series representation

m
fm (x) I e (x).W (2.4.16)

k= 1

Indeed, this approximation for f has some nice properties.

Theorem 2.4.4 Let H be a separable Hilbert space and let {O -

be a complete orthonormal system in H. Then for any xeH,

M M
l1x- I X k1 S1 x- I ekok (2.4.17)

k=i kmi

for any choice of constants eV . .tem

Observe that Theorem 2.4.4 implies that the best approximator w.r.t.

the least squares criterion for an element in a separable Hilbert

space is provided by the truncated Fourier series representation.

If one seeks a geometric interpretation of least squares
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approximation, some fundamental definitions and notation are required.

Since a separable Hilbert space is also a vector space, one may employ

Pn analogy to vectors in Euclidean space and define for any two

elements x,y in a Hilbert space H the proiection of x on y by

proj(x.y) -(xy)/(yy)]y. (2.4.18)

Using this interpretation, one sees that an element of a separable

Hilbert space may be expressed as the sum of the projections of the

element on the elements of an orthonormal system. Furthermore, one

observes that the orthonormal system {k)}k- defines a subspace of

the separable Hilbert space H. In this sense, the truncated Fourier

series representation for an element x in H is essentially the

projection of x into an m-dimensional subspace of H. For a clearer

j exposition on the geometric interpretation of least squares

estimation, see Chapter 8 of Davis(1975).

Many of the results stated above also hold if to 100 is merely

a system of orthogonal elements, except that terms involving 11 1k<" may

I have been omitted. (Recall, in the setting considered II klIl.) These

results are used extensively in the statistical literature, most

notably in the study of linear models. However, in many statistical

I" settings, finite-dimensional vector space theory is sufficient to

handle most problems of interest.

Many fundamental analysis texts discuss orthonormal systems for

the space L2 (a,b) as well as for other spaces of functions. The most

popular systems include Jacobi polynomials, trigonometric systems, and

r 3

-.- 5Hl
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complex exponentials. Lanczos (1956), Rainville (1960), Davis (1975),

and Powell (1981) are some basic references on approximation theory

that identify various useful orthonormal systems.

For a discussion of some basic integration theorems and other

results for Lp spaces, one may consult basic texts such as Royden

(1968) or Hewitt and Stromberg (1965).

Most of the discussion thus far has emphasized only

approximations by orthogonal expansion. Some results found in Bochner

(1955) are valuable for other types of approximation. Parzen (1962)

contains some useful essentials of approximation theory relevant to

kernel density estimation based on some of the elements of

approximation theory discussed by Bochner. J

Theorem 2.4.5 Let K(x) be a Borel measurable function satisfying I

i) sup IK(x)I <;
x

ii) f IK(x)l dx <-; and

iii) Jim IxK(x)I -0.

Let f(x) satisfy II

iv) f If(x) I dx<-. c

Let {h(n)) be a sequence of positive constants satisfying

11
I
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v) h (n)-*O as n--,

Define approximating functions fn (x) by

fn (x) If C/h(n)J K y/h(n)jf(x-y) dy. (2.4.19)

Then at every continuity point x of f,

q.m.
f (x) --+f(x) J'K(y) dy as n- o. (2.4.20)n

Result (2.4.20) illustrates why one usually makes the additional

I restriction that K(x) integrates to one. One calls K a kernel

function, and specific suggestions for K may be found in Sochner

1 (1955) or Parzen (1962).

fParzen considers analogous results for the Fourier transforms

1 k (u) f f* exp(-iux) K (x) dx (2.4.21)

Iand

0(u) 4exp(iux) f (x) dx, (2.4.22)

I

and extends these results to the solution of problems of density

I estimation. Some of these results will be mentioned in section 3.3.

Other results in approximation theory are applicable to

statistics. As suggested, a reference such as Abramowitz and Stegun

I
I

i : .II , [ a ,r~ -l _l : : Il_ .
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(1972) is very handy for computer implementation of approximation

theory results, and most such references require little mathematical

expertise. We have avoided discussion of spline approximation

techniques as we will continue to do throughout this work, but useful

references such as Ahlberg, Nilson, and Walsh (1967) and Wahba (1971)

adequately discuss the topic.

2.5 Some Fundamental Stochastic Processes and Complex Regression

The standard linear regression model is usually written

p
Yi a Bo + I Sk Xki + e"  il,....n, (2.5.1)

k= 1

where observations on the vector X-(X 1 ... Xp) are assumed to be

measured without error and the ei are uncorrelated random variables - !

with common mean zero and common positive finite variance as . In

matrix notation, one writes d

Y X6 + e , (2.5.2) ii

or one may express (2.5.1) by II

E(YIX-x) - o +  x , I
k-i k k

Var(YIXMx) a as. (2.5.3)

It I
JI
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I
The well known Gauss-Narkov Theorem (see. e.g., Graybill, 1976) states

I that under these equivalent model specifications, the least squares

estimate of 0, namely

S- (X'X) 1 X'Y, (2.5.4)

is the uniform minimum variance linear unbiased estimator (BLUE) of

Note that for conditions (2.5.3) one must also specify that

I observations are obtained from a random sample to insure that the Y

values are uncorrelated. When one assumes a Gaussian model, i.e.,

with normally distributed error term, the least squares esti..dtor B is

also a maximum likelihood estimator and assumes the additional

property of of being a uniform minimum variance unbiased estimator

3(URVUE). Graybill (1976) summarizes the relevant statistical facts

about the linear regression model and considers the general linear

regression model allowing correlated error terms with specified

g covariance matrix E. The general least squares (GLS) estimate of a is

|(XIE-1X)..1X' -1y (2.5.5)

when E is known. When the covariance matrix is unknown, it must then

be estimated to obtain an estimate for g. Graybill (1976) discusses

conditions that the covariance matrix must satisfy to insure that the

ordinary least squares (OLS) estimator given by (2.5.4) remains a

UAVUE under the more general setting. Estimation of the covariance

matrix poses some serious problems to obtaining statistical properties

I
I
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for GLS estimators of the coefficient vector. Just such a problem

occurs in the density estimation procedure discussed in section 4.3.

Unfortunately, when the properties of the error vector are only

approximately known, one must seek heuristic solutions to the

estimation problem. j
Parzen (1961) considers a general setting applicable to tim

series analysis. Essentially, (2.5.1) represents a discrete parameter 1
stochastic process. The continuous parameter analog may be written

Y(t) - m(t) + Z(t), teT, (2.5.6) I

where m(t) is a mean value function and Z(t) is a stochastic process I
with specified properties. One usually assumes that Z(t) has zero

mean and covariance kernel i
I

K(st) - E[Z(s)Z(t)J. (2.5.7)

Furthermore, as in the linear regression model, one assumes that Y(t)

is observable while Z(t) is not. The following development mirrors

Parzen (1961) . I

Definition 2.5.1 A Hilbert space H with inner product (.,.) is

said to be a Reoproducina Kernel uilbert Space (RKHS) with reproducing

kernel K if members of H are functions defined on a set T and 9 is a II
function on TxT with the following properties for every t in T:

I
III
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i) K(',t) as a function of t is in H. and

I ii) (g,K(',t)) - g(t) for every g in H.

I
Two special stochastic processes are of interest in establishing a

*parametric theory for continuous parameter regression analysis.

I Definition 2.5.2 A stochastic process {X(t), tE:[O,-)} is said to

be a Weiner process if X(O)wO and

5 i) {X(t), teC[Oo)) has stationary independent increments;

ii) for each t>O, X(t) is normally distributed; and

iii) for all t>O, EEX(t)]-O.

INote that knowledge of the variance of the Weiner process completely

i characterizes its probability law. For O;sSt, one observes that

Var[X(t)-X(s)] - aa (t-s). (2.5.8)

5 A Weiner process is a special case of a normal process. A normal

process requires that all finite dimensional distributions be jointly

normal. Another special case of a normal process is given by the

following definition.

I' Definition 2.5.3 A stochastic process ({(t), te[O,l}) is called a

Brownian Bridge Process if it is a normal process with zero mean value

function and covariance kernel
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K(s,t) = min(st) - st. (2.5.9)

An important regression model applicable to the density estimation

approach of section 4.3 is given by

m
Y (t) I a 9ko k  (t) + 8 (t) , OStS1, (2.5.10)

k-i

where (0k(t), k-l,m) is a complete system of orthogonal functions in a

finite dimensional subspace of LI(Ol) and (B(t), OStl is a Brownian

Bridge process. Eubank (1979) discusses optimal designs for

estimating the (6 , k-1,m} based on a finite grid of points in [0,].

One may not have the option to design an experiment to take advantage

of these results, however. We shall not consider the problem of

optimal designs for such models. .1

Experience indicates that the OLS estimation techniques often

compare favorably in comparison with GLS methods based on estimating

an unknown covariance matrix. However, the results are not

satisfactory when the discrete covariance structure does not have

vanishing off diagonal elements as one moves away from the diagonal.

The applications discussed in later chapters avoid such situations.

For the model (2.5.10), Parsen (1961) shows that the maximum 5
likelihood estimates of the parameters are given by

ek a MO , j=1,m, (2.5.11)

where (',') is the inner product of the Hilbert function space

I

i
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generated by the reproducing kernel K(s,t) of the Brownian Bridge

process given in (2.5.9). For nonlinear mean value functions or for

infinite expansions utilizing a countable system of basis functions,

the problem is more complicated. Desirable properties for the

Iestimates are stated in Parzen (1961), and references are given to

proofs from other sources. Specific representations for the estimates

will be given in later chapters under nonparametric settings without

3exploiting the reproducing kernel property. Such generalizations may

be desired but will be left to the more mathematically sophisticated

3researcher.
In some situations, the orthonormal system {0k' k-l,m} will be

Icomposed of complex valued functions. Brillinger (1975) discusses

some generalizations of least squares theory to handle this situation.

A complex matrix H is said to be Hermitian if the transpose of H is

Sequal to the conjugate of H. This extends the notion of symmetry for

real matrices. One writes H is Hermitian if H'I-H. The definition of

! nonnegative definiteness readily extends to complex systems. A matrix

H is said to be nonnegative definite if

m m

I Ia. k H. k Z 0 (2.5.12)
j jI kI J J

for all complex constants a 1 ... am, where H(Hjk) is an m by m

complex matrix. The matrices H1'H and 14' are always Hermitian and

I nonnegative definite.

i Now, consider the complex regression model

I
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Y Hs + _ (3.4.13)

where Y is an nxl observable random vector, the elements of the nxp

matrix H are measured without error, a is a pxi vector of parameters,

and e is an unobservable nxl vector of zero mean uncorrelatod random

variables with finite variance a2. Then

(Y-Hl3)'(Y-H$) (2.5.14)

is minimized over all choices of 8 when 8 is estimated by

(H'H)-H'Y (2.5.15)

for nonsingular H'H. Equation (2.5.15) represents the least squares

estimates of the parameters in (2.5.13). When the corresponding

elements are real, this reduces to the usual least squares formula.

Observe that Y and e may be real random vectors and still support iJ
complex parameters and design matrix, the only restriction being that

complex components of the product must vanish. Ii

II

I

II
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3. A SURVEY OF NONPARAMETRIC DENSITY ESTIMATION

3.1 Introduction

In some general cases, parameter estimation is a form of

parametric density estimation. Estimating the mean of an exponential

distribution or the mean and variance of a normal distribution

provides an estimate of the density for that particular distribution.

Many goodness-of-fit procedures combine parametric and nonparametric

density estimation procedures to arrive at a test statistic for a

specified null distribution. The applications of density estimation,

however, extend to many areas of statistics. Many parameters of

interest are functionals involving the parent density of a data set,

so estimating a density can lead indirectly to estimating a parameter

of interest. For example, as mentioned in section 2.2, the satistic Xn

is often written

I
Sn " fx dF n (x) (1/ n) X , (3..1)

where Fn (x) is the empirical c.d.f. based on a random sample of size

n, thus emphasizing that n is an estimator of the parameter! n

f " x dF(x). (3.1.2)
| -"

Writing the above as a Rlemann integral, one may wish to form

estimates

II '
F2
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- fQx fn (x) dx (3.1.3)

where the integration may be performed numerically. The common

grouped data formula for X given in many elementary statistics texts
n

is actually an integral of a histogram for the data set. Thus,

nonparametric density estimation provides a basis for attacking many

statistical problems from a nonparametric viewpoint.

Silverman ('980) observes that density estimation is of

fundamental importance in exploratory data analysis and has many

applications in confirmatory analysis. Silverman notes, however, that

"...density estimation cannot be used as a 'back of an envelope'

exploratory technique..." like many of the techniques of Tukey (1977),

but he does not see this as a disadvantage. In fact, the current

state of computer technology and the availability of sophislicated

statistical sof-ware should make one question any serious exploratory

analysis that does not include some form of nonparametric density

estimation.

Bean and Tsokos (1980), Tapia and Thompson (197A), Tartar and

Kronmal (1976), Carmichael (1976), and Wertz (1980) provide useful

bibliographic and expository information regarding the nonparametric I
estimation of densities and related functions. However, the abundance

of literature on the subject should not disguise the fact that the

area of nonparametric density ettimation is rich with unsolved

problems. The fundamental weakness of most procedures is the II
subjectivity required in choosing a "smoothness parameter'. Some

objective techniques for handling this problem have been suggested, I
Ii
I
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but in general the problem presents a serious obstacle to the

applicability of most density estimation methods.

This chapter will deal with the major classifications of

nonparametric density estimation techniques, giving details of some of

the more popular procedures. Comparisons of some of the procedures

I will be made in Chapter 6, but no Monte Carlo study has been attempted

because of the difficulty in handling the subjective smoothing

requirements. Anderson (1969, as referenced in Bean and Tsokos, 1980)

and Scott and Factor (1981) consider such studies for a restricted set

I of estimators, but their findings are somewhat inconclusive in terms

of the general area of nonparametric density estimation.

Many of the techniques discussed have multivariate extensions.

I These will be mentioned or referenced , but attention to bivariate

density estimation will be withheld until Chapter 4. Both univariate

I and bivariate techniques will be important in the study of bivariate

data analysis. Before considering the techniques, some preliminary

I concepts need to be introduced.

For the following definitions it will be understood that f is an

estimate of an unknown p.d.f. f based on a random sample of size n.

Definition 3.1.1 The mean squared error (MSE) of f (X) is defined
n

by

I MSE[f n (x)] - E{If n(x)-f(x) (3.1.1)

if MSE~f nx)] +0 as n-o- ,then one says that f n(x) is pointwise

I

I
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consistent in quadratic mean or pointwise consistent in mean square

for estimating f(x). If sup{MSE[fn(x)JI 0 as n- , then one says
x

that fn is uniformly consistent in quadratic mean for estimating f.

Definition 3.1.2 The mean integrated square error (MISE) of fn is

given by

IISE(fn) - E{ f jfn()-f(x)12dx}. (3.1.2)

If MISE(f )-).0 as n-, then one says that fn is uniformly consistent
n n

with respect to RISE for estimating f.

The deinitions of weak and strong consistency apply to f (x)n

pointwise, while uniform consistency will imply I

sup If (x)-f(x) 0 (3.1.3)
x

in probability (weakly) or almost surely (strongly).

Two theorems are often exploited regarding applications to

density estimation.

Theorem 3.1.1 Let X1 ,X 2, .... and X be random p-vectors and let

g:RP R be a real-valued measurphle function that is continuous w.p.1.
Then II

a.s. 

a.s.

i) Xn - X implies g(X n ) (X);

II

iI
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P P
i i) X- d X implies g(X n ) - g(X); and

dd
i i i) X n X implies g(X n ) - g (X).

nHI
Serfling (1980, pp. 24-25) proves this theorem and references the more

general case where g is vector-valued. By application of this

theorem, one obtains the following useful result.

Theorem 3.1.2 Let X be AN(i,c 2) with a2 0. Let g be an n

real-valued measurable function that is differentiable at x-V, with

g' () 0. Then

I g(X ) is AN(g(,) Cg' (i)Io2)
nn

As will be seen later, these theorems are usually applied for

g(x)-log(x). Serfling discusses applications to such areas as

variance stabilizing transformations and gives several examples

I utilizing choices for g.

II 3.2 Nearest Neighbor Density Estimkzlion

I
Loftsgaarden and Quesenberry (1965) attack the problem of

estimating a multivariate density function and arrive at a fairly

simple method that possesses desirable properties. Their work appears

I before that of Cacoullos (1966) who generalized the kernel approach to

the multivariate case. and thus represents the first formal

development of a technique for multivariate nonparametric densityI

-ii
-- ' ,I
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estimation.

Let X1 ...,Xn be i.i.d. random p-vectors with absolutely

continuous c.d.f. F(x ..... Xp) and p.d.f. f(xl,....x p ). Define

Vk(x) - volume of smallest sphere centered at x

containing at least k points. (3.2.1) j

Recall, a p-dimensional sphere with radius r has volume

V M [,TP/2 rP]/[(p/2+1), (3.2.2) ]
where r(.) is the gamma function. The nearest neighbor density

estimate of f(x) is given by

]
f (x) - (k/n)/V k (x), (3.2.3)n k

where k-k(n) is chosen to satisfy certain limiting properties.

Loftsgaarden and Quesenberry (1965) show that fn(x) is weakly I
consistent for estimating f(x). Devroye and Wagner (1977) show that

with the conditions

i) k(n)-o and k(n)/n4O;

ii) k(n)/Iog(n).o; and (3.2.4) I
iii) f is uniformly continuous on RP ,

I
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5 then f (x) is strongly uniformly consistent for estimating f(x), i.e.,

In

sup Ifn(X)-f(x)J - 0 a.s. (3.2.5)
x

I For our purposes, we emphasize two theorems due to Moore and

* Yackel (1977b) and restrict our attention to the univariate case.

Theorem 3.2.1 Let f (x) be given by (3.2.3) and let the following

properties hold:!
i) f is continuous at x;

Sii) k(n)-o and k(n)/n-)O as n-0; and

3 iii) k (n) /log (log(n))--o.

Then f (x)-,.f(x) a.s.

Theorem 3.2.2 Let f (x) be given by (3.2.3) and let the followingn

properties hold:

i) k(n)-).m and k(n)/n+O as n-M; and
Sii) itW If (x )-f(xfW1- in probability when IXn-KISR(n),.

where R(n) is the radius of the sphere yielding Vk(x). Then

d
rWN( f (x)-f(x) I NO,.fW(x)3nI"

I
I

il9
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i.e., f (x) is AN[f(x),f2(x)/k(n)).
n

As suggested previously, one would prefer that the asymptotic

variance did not include an object to be estimated. Theorem 2.3.7 is

useful in suggesting variance stabilizing transformations for such

cases. Observe, using the log transformation and applying Theorem

2.3.7, one obtains log[f (x)] is AN~log f(x),1/k(n)]. This result is

particularly important to expansion techniques for log f(x) to be

considered in section 4.3.

Moore and Yackel (1977a,1977b) and Mack and Rosenblatt (1979) j
consider a more general representation than (3.2.3) and suggest

analogies to kernel density estimation. The asymptotic properties of I
nearest neighbor estimators thus mirror those of kernel density

estimators. Kernel estimators are considered in the next section.

.1
3.3 Kernel Oensity Estimation i1

The kernel method of density estimation provides a natural

extension to the popular histogram estimator and has a firm foundation I
of approximation theory results to support its use. Rosenblatt (1956) jj
considers this extension of the histogram approach, and Parzen (1962)

details the theoretical implications of this technique. f
Observe, a histogram estim:tor of f may be constructed such that

the partition of the support of f is composed of equally spaced Ir
intervals. Consider the estimator due to Rosenblatt (1956) defined by 1j

' , i 'I l' '1 •a e e
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J fn (x) - {Fn (x+h)-F n (x-h)}/(2h) (3.3.1)

I where h-h(n) is a real valued positive function of the sample size n

with h(n)+O as n+w. Rosenblatt shows that for h(n)-kn " , optimal

Ivalues for k and a may be chosen based on asymptotic mean square error
ior integrated asymptotic mean square error considerations.

Now, if one lets the kernel K be defined by K(u)-1/2 for Iu<l

and K(u)-O elsewhere, then (3.3.1) becomes

n
f (x) - [1/(nh(n)) I K[(x-X .)/h (n)). (3.3.2)
n j=l

I Thus, a more general approach is suggested using the kernel K(u) as a

weight function, and forming estimators

nf(x) n rE1/h(n)]K[(x-y')/h(n)] dFn(y')

n
- [1/nh(n)] I KE(x-X.)/h(n)]. (3.3.3)

I Parzen (1962) gives a table of some common kernels and develops

I conditions that K(u) must satisfy to obtain desirable statistical

properties for the kernel estimator. Two theorems are of importance

I to us.

I Theorem 3.3.1 Let K(u) be a kernel satisfying

i) sup IK(x) l < - ;I x

I

"A
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Hi) fPK )l dx <-;

ii I) Im JxK(x)I -0; and

iv) f K(x) dx 1.

Let f(x) be continuous at x, and let nh(n)-  as n- . Then

fn(x) - f(x) in q.m. j

Theorem 3.3.2 Under the conditions of Theorem 3.3.1, one also has I
that fn (x) is ANEE(fn (x)),Var(K[(x-X)/h(n)]/(nh'(n))]. j

Silverman (1978) gives the stronger result of almost sure uniform ]

cons i stency.

The basic problem one faces when using the kernel method is the j
choice of window width h(n). Different window widths produce

different shapes and In particular introduce the problem of

identifying spurious modes. Some degree of subjectivity is hence j
required to arrive at an acceptable shape for the estimated p.d.f.

Silverman (1980) suggests an objective approach to choosing a window I
width, but the approach necessitates estimation of variance terms

whose properties are questionable. Other authors have suggested II
objective techniques such as cross-validation and "ridge regression" g
that seem promising but still display weaknesses that cannot be

ignored. Nonetheless, kernel density estimation has been extensively U
studied in the literature and is competitive with other techniques.

Cacoullos (196) extends this technique to the multivariatecase. I

I

J~q " III II1| I I. I I , m-.. . .-.
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3.4 Function Approximation Methods

A problem in mathematical analysis is to approximate a member of

a suitably restricted class of functions {f(x)} by a series expansion

technique. The simplest approach seeks coefficients [a.}. such

I that

f(x) - a.x J  (3.4.1)
I j.O J

in the sense that

i im I f(x)- m a.xj I 0. (3.4.2)

j-0J_

Functions expressable ns in (3.4.1) are called entire functions

(Davis. 1975). When f(x) is a density, one might consider estimators

I f (x) - x (3.4.3)
U m

I where aj is a function of sample data and m is the order of

approximation determined by some meaningful criterion. The usual

series expansion for f(x) is a Taylor series, the simplest case given

by (3.4.1) with

a - f ()(o)/UjI), j-O 1l . (3.4.4)

where f (J)(o) is the j-th derivativ* of f(x) evaluated at 0.. One

I
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could then base (3.4.3) on estimates of the derivatives of f(x).

However, this is usually cumbersome and inefficient in practice. -,

A more general expansion is given by

f(x) W , a.. xgb (34 . 5) I

where {(0k1k..c are real valued constants and {Ok(x)khh., is a system

of real or complex valued functions. One may then study conditions 1
under which the expansion (3.4.5) is justified. This problem has been

studied extensively in the mathematical literature and has recently

been applied to statistical problems of density estimation.

Following the development of section 2.., let H be a separable I
Hilbert space and let {k (x)}Z. be a complete orthonormal system in

H. For most statistical applications, the space of square integrable i
functions LI(a,b) is general enough to include a large family of 1
p.d.f.'s and restrictive enough to permit formulation of useful

theory; thus, we will henceforth restrict attention to the Hil bert

space of square integrable functions. If one choose* an arbitrary

member of this space, say f(x), then one is justified in using the 11
expansion (3.4.5) with x in the Interval (a,b). ethemetical analysts I
have studied this expansion for a variety of orthogonal system of

functions. Series expansions of the form (3.4.1) may be translated to

(3.-4.5) by the Gram-Schmidt orthNgonalization of the basis set

(1,x,xz,...). Orthogonal polynomials and complex exponentials are two I

systems that have been studied extensively. The Jacobi polynomials

provide a general system of ortloonal Ipolynomials to consider, with Ii

V II

- - _------.--
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Legendre, Chebyshev, and Laguerre polynomials being special cases

(Lanczos, 1956). Complex exponential systems are the basis of Fourier

series expansions (Davis, 1975, Churchill, 1969).

For statistical applications, one may seek to estimate a variety

of functions using orthogonal expansions. Of primary importance,

however, is estimating the c.d.f. or p.d.f. that generates a set of

data. One may also estimate the quantile function using these

techniques, and some authors base an approach on estimating

characteristic functions (see, e.g., Watson and Leadbetter, 1963). We

will consider several approaches using orthogonal expansions to

estimate an unknown p.d.f. either directly or indirectly. The

assumption of a finite support for f is not overly restrictive as one

essentially is estimating the truncated density given by

.t i f (x) = g f x)/ f (x) dx, agxgb.

,i Furthermore, transforming a data set to fall in the interval [a,b] is

A |not difficult and has little if any effect on most estimates obtained.

Some systems, such as Hermite polynomials, permit expansion over the

entire real line, but one is always concerned about extrapolation

problems when dealing with a finite data set.

Cencov (1962, taken from Bean and Tsokos, 1980) considers the

expansion (3..5) where the system (xk(X):.. Is orthogonal w.r.t. a

I weight function w(x), I.e.,I
fa IWlx) dx - J) (3.4.6)
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.1

where 6(i,j) is Kronecker's delta. The coefficients (k-k.-o are

given by

ak - (f fx) ok (x) w (x)dx (3.4.7) k
and as mentioned in section 2.4, these are usually called Fourier

coefficients. Cencov (1962) then obtains estimates for these I
coefficients based on the empirical c.d.f. From a random sample of

size n he obtains

k f bak (x ) w (x )dF (x) - (1/n) I Ok(X w(x) (3.4.8)

The estimates given by (3.4.8) have some nice properties.

Observe.

n
E(§k) - (1/n) I E[*k(XJ)w(xj)] - fak X)w(x)dF(x) - ek

and hence k is unbiased for estimating 8. Furthermore, by the SLLN,

k-eka.s. This implies that for a finite parameter p.d.f. f(x) with i
expansion (3.4.5) and 8.-O0 for j>m, I

m
fn(X) I ekok(S), axSb. (3.4.9) I

ku-m

is inbiased and consistent for estimating f(x). However, f (x) will D
always be biased for estimating infinite parameter models of the form 1
(3.4.5). In this case. the problem then becomes one of choosing the

11J~ * ... .... i i .. Il i i • , 1
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"best" order m such that f (x) in (3.4.9) is a reasonably good

estimate of f(x).

I One might observe that the Cencov approach is a method of moments

estimating scheme. If one rewrites (3.4.7) in terms of expectations,

one obtainsI
ek = EEok(X ) w(X) ] ,  (3.4.10)

and hence (3.4.8) is merely a method of moments estimator of ek . As

mentioned in Chapter 2, many estimators based upon the e.d.f fall

Iinto this category.

Other authors have examined Cencov's technique for specific

systems of orthogonal functions. Schwartz (1967) considers expansions

based on Hermite polynomials and obtains asymptotic results

I competitive with kernel estimators. Walter (1977) obtains further

results based on this technique. Kronmal and Tartar (1968,1976)

consider trigonometric systems, and Crain (1974) uses Legendre

I polynomials. Anderson (1969) indicates that the Kronmal-Tartar

estimators seem to perform better than the Schwartz estimators based
I3

on Monte Carlo studies. This would imply that the choice of

orthogonal system is crucial to the estimation procedure. Since the

I literature abounds with various orthogonal expansion techniques, only

ga few of the more promising ones will be considered.

Kronmal and Tartar (1968) consider estimation techniques based on

I Fourier series expansions of the c.d.f. F(x) and the p.d.f. f(x).

They consider estimators of the formI

I
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fx) , a.(x), a-IxSb (3.4.11)

and

^ mFm) MW I_.0 W](x , a~x~sb (3.4.12) _

where [01.m satisfy (3.4.6). Using trigonometric systems of I
j j--m

orthogonal functions they obtain 3
m

f M(x) c0/2 + k-I ckcos k1(x-a)/(b'a)) (3.4.13) 3

where

nt
ck a 2/[(b-a)n] cosEk (Xi-a)/(b-a)) IA(Xi). (3.4.14)

i-i

where Axij,b]. This estimate is a derivative of an estimate of F(x)

obtained by the expansion (3.4.12) using Cencov type estimates of the j
coefficients, i.e., using Fourier coefficients based on the e.d.f.

Modifications are also suggested to ensure that the density estimate

is positive. Tartar and Kronmal (1976) also consider a similar

approach based on complex exponentials (i.e., the complex form of the

trigonometric systems). From model (3.4.11) they obtain the Cencov II
type estimates

n pI
ak (1/n) I exp(-2,ikX.) , k-m...,m, (3.4.15)

J-1I

t rU
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for the Fourier coefficients. Using an analogy to stepwise regression

dnd the MISE criterion, they omit coefficients ak and ak if

aka-k : 2/(n+I) (3.4.16)

g and terminate the order of approximation when K consecutive

coefficients are deemed not significantly different from zero. For

practical applications, Tartar and Kronmal suggest letting the maximum

order of expansion be m-1O, and suggest that K-i or 2. Large values

I of m or K usually produce very wiggly estimates of the p.d.f. The

MISE stopping rule suggested by Tartar and Kronmal is similar to

Parzen's CAT criterion except it emphasize2 the contribution of

parameters whereas the CAT criterion emphasizes the reduction in

residual variance. Such stopping rules add a degree of objectivity to

an otherwise subjective endeavor, but detractors often question the ad

hoc nature of the criterion functions.

Crain (1974) uses Legendre polynomials as an orthogonal basis

set, but he chooses to expand log f(x) instead of f(x) or F(x). Let

f(x) be continuous and strictly positive definite such that

I
log f(x) - Z 8k~k(X) - C(), aSxSb, (3.4.17)

k-i

where k) are the Legendre polynomials over -,I and C(D)
(k k-l

is an integrating factor insuring that f(x) integrates to one.

g Consider order m approximators

I

I
__ _ _
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f Wx - exp{ I e9.kWx- (0e*) I, a:SxSb (3.4.18)
mm k

where m and fe*} are determined by some suitable criterion. Crain

%k

uses the criterion of maximum likelihood and establishes conditions

that ensure a unique solution vector 9* exists for the representation j
(3.4.18). One observes that (3.4.18) is the canonical exponential

model representation of a density belonging to a finite parameter j
exponential family. Furthermore, the expansion of log f(x) rather

than f(x) insures that f (x) will be positive. One may then treat Im

exp{- C(B*)} as an integrating factor to insure that fr(x) j
numerically integrates to one.

Sillitto (1969) uses Legendre polynomials shifted to [0,1 to j
expand the quantile function in a Fourier series and suggests using

linear combinations of order statistics to obtain estimates of I
parameters. Let X In,X 2n.... X be the order statistics from a random

sample of size n with strictly increasing (absolutely continuous)

c.d.f. F(x). Let Fpn=E(Xpn) be the expectation of the p-th order I
statistic in a sample of size n. Then

Q(u) I (2j-1) X P*-_(u) (3.4.19)

where I!

j k-1 l
(l!j) I_) k j-k,j (3.4.20)

and P* (u) is the shifted Legendre polynomial of degree j-1. A 11j-l

'U. *
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natural estimator of the {Xj} is provided by

(/j) k ()k k,j (3.4.21)
k-O

where Xjk,j"Xj-k,n  (i.e., treating the first j order statistics as

if from a sample of size j). Thus, A. is a linear combination ofIJ
order statistics whose properties are discussed in Sillitto (1969).

From the {Aj} one obtains

n
Q(u) Z (2j-1)X.jP_ (u). (3.4.22)

j 1I

I To obtain a density estimator, first compute

4 (u) -n{& [(kj+.5)/(n'))-&[E0-.5)/(n+l) I,I

I 0 -.-5)/(n+1):5u< 0+.5)/(n+1), (3.4.23)

as a raw derivative of Q(u) and then use the reciprocal identity

I [equation (2.2.4)) to obtain

f (Q (u)) - l/q (u), (3.4.24)

I
which can be plotted for x-Q(u) abscissa values to look like a density

I rather than a density-quantile function if desired.

The nature of functional approximation techniques can lead to a

variety of solutions based on the nature of the expansion and the

! I1
* . --- Ial- n 1
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estimation criterion used. An annoyance is the necessity of

considering estimates only in the interval [a,b], but for most .
applications this poses no real problem. One may wish to investigate

which expansions are optimal for specified distributions possessing

properties such as symmetry, skewness, wide tails, etc. However, this j
may be a difficult task with little reward as suggested by some of the

simulation studies that have already been performed. Since the

primary goal is to estimate an unknown density, one should seek a

procedure that prforms well for a large variety of probability models.

The class LI(a,b) provides such a large collection of interesting I
models, and hence the techniques developed in this section should be

competitive for a wide range of parent distributions. An extension of

some of the techniques of this section will be considered in section

4.3. For the basic asymptotic results of any particular density i
estimator discussed in this section, one is referred to the citation 11
corresponding to that procedure. We will have little use of these

results for the applications and extensions to be considered later.

3.5 The Autoregressive Approach i

The autoregressive approach to density estimation due to

Carmichael (1976) and Parzen (1979b) is based upon an analogy between

the spectral density of an autoragressive time series and the

probability density of a random variable. A density f(u), OSu:1, is "

said to have an autoregressive representation of order m if it is of

the form

I.
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IM m

f(u) m K j "  a(j)exp(2.riju) -2. (3.5.1)j =0

where a(O)=1, m is a positive integer, K is a positive constant, and

a(1),...,a(m) are complex valued coefficients satisfyingI
i g (z) = 1 + a(l)z +...+ a(m)z (3.5.2)

I has all of its roots outside the unit circle. Parzen (1979b)

considers the autoregressive representation of the density-quantile

function fQ(u).

Analogous to parameter estimation for an autoregressive time

series, one estimates the parameters a(l) ,...,a(m) via the Yule-Walker

I equations

R R(O) R (1) ... R (m-l1) a (1) R (-1)

R(-1) R(0) ... R (m-2) a(2) R(-2) (3.5.3)

I
R(I-m) ... R (0) a (m) R(-m)

where R(v) is the Fourier-Stieltjes transform of F(x),

R(v) -f exp(2wivx) dF(x), IvI-O,l,2,.... (3.5.4)1 0

One estimates R(v) by

l'' f exp(2,ivx) dF (x) (3.5-5)
0 

n=350

I Jd
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and obtains a(1) ... a(m) by solving (3.5.3). One also obtains

m

K 0j=o ;(j)k(j), (3.5.6)

where one takes a(O)-1. The constant K becomes an integrating

factor, but it corresponds to the prediction variance of an

autoregressive time series. In the case of density estimation, Km J

will be interpreted as a residual variance to facilitate an objective

procedure for determining the best approximating order m. One selects

order m such that Parzen's criterion autoregressive transfer function, J
given by ]

m

CAT(m) - (1/n) K: - K-1, (3.5.7)
j-I J M

achieves its minimum at m.

Carmichael (1976) gives conditions for the convergence of

(x) - i I a (j)exp(2,ijx) - (3.5.8)
j-O

to the true density f(x). He also relates the autoregressive

representation to an approximation in a reproducing kernel Hilbert

space using eigenfunctions and eigenvalues corresponding to the I
reproducing kernel R(v). For inwre insight into this interpretation,

see Parzen (1959, 1967) and Bochner (1955).

Parien (1979b) develops a goodness-of-fit procedure using the

autoregressive technique on a uniform density d(u). First, observe H
I
I

ii
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that under H0: fQ(u)-foQ0 (u) for some specified foQ 0 (u), the density

d(u) defined by

I
d(u) - foQo(u)/fQ(u), Osu<1, (3.5.9)

is a uniform density over [0,1). One can then develop a

goodness-of-fit procedure based on the sample uniform density defined

by

I d(u) - foQo(u)/iQ(u), OSu:5f. (3.5.10)

for some estimate fQ(u) and null value foQo(u). Parzen develops an

g autoregressive estimator

m

dm(u) R M I (.j)exp(2riju)1-2, OSUS I , (3.5.11)

j-0

I where

Imr
I (j) exp (2'ri j u)I2 d (u) du, (3.5.12)m 0 jO

I(u) - (u)/aot (3.5.131

I
with a0 serving as an integrating factor and q(u) representing the

I empirical quantile-density given by equation (2.2.41). The values

Ia(]).....(m) are derived from the Yule-Walker equations using

I
I i
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D(u) - iod(t) dt, O:uS], (3.5.14)0A

in place of F (x) in equation (3.5.5). One may then use d m(u) to form

test statistics for testing H : fQ(u)mfoqo(u) against specified

alternatives. The estimate dm (u) leads to an estimate of fQ(u) given j
by I

fQ(u) = fQo (u)/d (u), 05u51, (3.5.15)

which is based on the representation (3.5.10). Observe that this ]
estimate of fQ(u) is "weighted" by the null density-quantile f0Qo (u).

Parzen (1979b) suggests that using the normal density-quantile for

f oQ 0 (u) provides an essentially nonparametric procedure in that a

variety of distributional shapes may still be discovered using this ]

symmetric "smoothing" function.

One of the drawbacks to the autoregressive approach is the

difficulty in justifying its use in an intuitive fashion to persons

ignorant of autoregressive time series modeling. However, as Parzen

(1979b) observes, the knowledge of time series analysis is not 3
essential for one to be able to apply the procedure. The

autoregressive approach also seems to be a monster of computational

complexity, but many of the computational problems have been overcome 3
by numerical analysts.

There are many advantages to the autoregressive approach to

density estimation: o

7
I
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I) It provides an objective means of determining the amount of

smoothing required.

2) It provides an abundance of goodness-of-fit diagnostics for a

specified null distribution.

j 3) It has desirable asymptotic properties and seems to perform well

for small samples.

4) Computer software is available implementing the procedure (Parzen

I and Anderson, 1980).

The objective determination of the smoothing order is further enhanced

in that it is intuitively justified by the autoregressive model

I interpretation of the CAT function. One disadvantage to the

autoregressive approach is that it may not be extendable to the

multivariate case. With this in mind a comparable procedure is

developed in the next chapter that readily extends to the bivariate

case.

I
3.6 Other ApproachesI

i In this section we briefly mention techniques that in some cases

are variants of the three previous techniques mentioned.

The spline method may be considered as an extension of the kernel

method with additional restrictions made to determine the type of

I smoothing desired and the class of spline functions to be employed.

Wahba (1971) considers smoothing the empirical c.d.f. or the empirical

quantile function and then differentiates the smoothed estimators to

IIno
-V Sm : , ,r - z _
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obtain an estimator for the density. A selling feature of this

technique is improved rates of convergence in mean square over the

kernel method. j
The technique of discrete maximum penalized likelihood (DIPL)

estimation as presented by Tapia and Thompson (1978) uses an approach

that is a combination of kernel and splint methodologies employing a

discrete approximation to a likelihood functional. The resulting I
estimator is a maximum likelihood estimator (m.l.e.) of a criterion

function with an arbitrary smoothness parameter. The object to be

maximized is a discrete approximation to the functional J

L(f) - n f(Xt)exp 1 -a f0[fJ (t)IIdt}.
iml -00

Tapia and Thompson present results for this approach along with

suggestions for multivariate extensions.

The reciprocal identity employed by Sillitto in section 3.4 is

also the basis for the estimator proposed by Bloch and Gastwirth ]
(1968). Their estimate is simply the reciprocal of a raw estimator of

q(u)-Ql(u) similar to equation (2.2.41). Their goal concerns ii
asymptotic variance estimation for sample quantiles, and hence they

are concerned with pointwise estimation rather than evaluating shapes.

There are many techniques for nonparametrtc density estimation U
with each attempting to display tome statistical or computational

advantage. The references mentioned in the first section of this U

chapter discuss most of the existing techniques and provide a more

comprehensive exposition than contained in this section. Our goal has

I ,
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been to outline the major classifications of density estimation

procedures so as to provide a framework in which to make comparisons

with a new technique to be developed in the next chapter. Some

comments along these lines are offered in the next section.

3.7 Concluding Remarks

Appraising nonparametric density estimation techniques involves

consideration of estimation criterion, robustness, small sample

I performance, and the nature of the statistical problem of interest.

Some techniques may be exceptional for pointwise approximation of a

I density but lacking when shapes, tail areas,etc., are important. For

gexample, DIAPL estimation seems to provide good estimates at a grid of
mesh points but somewhat artificially provides the shape of a density.

Specifying more mesh points increases computational problems and slows

convergence of the algorithm. The emphasis on robustness may hinder

Ievaluating the nature of the tails of a density. Small sample

properties may appear satisfactory in simulations, but the problem

I remains that often small samples do not contain enough information to

1diagnose weaknesses in the estimate obtained.

Perhaps the most critical problem is the existence of smoothing

I parameters or orders that must be dealt with in a subjective fashion.

The autoregressive technique and the Tartar-Kronmal orthogonal

I expansion technique suggest criteria for obtaining optimal orders, but

further research is warranted into the development of meaningful order

determining criteria. However, one may question whether model

I
I
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selection should be made completely automatic, as such an approach

might prevent examining interesting models that may have more

theoretical motivation. Automation of a technique could destroy its

usefulness in an exploratory analysis.

Another consideration is computational efficiency in light of

asymptotic requirements placed on smoothing parameters. One may find

it difficult to translate asymptotic restrictions into computer code. j
Often an upper (or lower) bound is programmed into a procedure so that

asymptotic conditions cannot be made to hold, but it would be rather

foolish to pay too much attention to this matter since very large data

sets may be a rarity. Tartar and Kronmal (1976) suggest that a

maximum order of 10 will be adequate for most data sets encountered.

The BISAM program discussed in Chapter 5 currently restricts one to a

maximum order of 7 which seems adequate for most data sets. The I
legitimacy of such program restrictions is illustrated by Table I

which shows some values for common bin width and order parameters as a

function of samole size to accomodate the asymptotic theory.

As a final note, the observation is made that much of the

literature emphasizes asymptotic properties paying little attention to

the practicality of a procedure. While asymptotic properties are

desirable, they are worthless when an unmanageable algorithm is I
required to perform the necessary computations. Unfortunately, this

attitude may be carried to extremes as indicated by the overwhelming

popularity of histograms. One naturally attempts to seek a balance

between theory and computational efficiency. This philosophy is

exemplified in the methodology and computer software development

1 ,i
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Table 1. Asymptotic Smoothing Orders as a Function of Sample Size

n log(n) I og (I oo (n)) SORT(n) n**(1/3)
20 3.00 1.10 4.47 2.71
50 3.91 1.36 7.07 3.68
100 4.61 1.53 10.00 4.64
500 6.21 1.83 22.36 7.94
1000 6.91 1.93 31.62 10.00

10000 9.21 2.22 100.00 21.54
100000 11.51 2.44 316.23 46.42

1000000 13.82 2.63 1000.00 100.00

f described in the following chapters.

I
I
I
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4. BIVARIATE STATISTICAL DATA MODELING

4.1 Introduction I
Many of the density estimation techniques of Chapter 3 had j

multivariate extensions. Bivariate density estimation will provide

the framework for the methods of bivariate data analysis that will be j
developed in later sections. The usual problems of multivariate

analysis, however, will present obstacles to direct extension of I
univariate techniques. One has difficulty in ordering vectors in

higher dimensional spaces as well as defining multivariate

counterparts to univariate functions. Estimating derivatives of

empirical distribution functions is made more difficult and any

smoothing must be accomplished for several dimensions. Graphical

displays must be b6 ken into component parts for more than three

dimensions. Critical regions are more difficult to derive and power

considerations for tests of hypotheses may be theoretically ]
impossible.

Our e.phasis has been on function estimation and graphical

display. For a multivariate problem of more than three dimensions,

one may seek to break up the problem into components involving three I
dimensions or less. As an analogy, recall that the analysis of

variance may be treated as multiple t-tests for pairwise comparisons.

Naturally, one would only recommend such an attack if the higher U

dimensional problem had no solution or was too difficult to implement,

which is not the case in the analysis of variance analogy. Where

U
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multivariate extensions are not possible, we will recommend treating a

multivariate problem as a composition of bivariate problems to be

handled by techniques developed in this chapter.

4.2 Normal Theory

As previously mentioned, the usual first step in testing a

procedure is to see how it compares to the normal theoretic techniques

when data is generated by a normal probability mechanism. In this

section, existing normal theoretic results will be examined. For

references, Rao (1973), Kshirsagar (1972), or Grayb 11 (1976) provide

basic information on existing normal theoretic methods.

Recall, a random p-vector X - (X I,X 2....X )' has a multivariate12 p

normal distribution if its p.d.f. is given by

f -ix) (2-p12 I~-1/2 1 -
x) (2 f I exp{--L(X-u) 'E (X-p_) } (4.2.1)

where 4- E(X)-(E(X Q.....E(X ))' and z = (Cov(X.,X.)). The case p-2

reduces to

f xY(x,y) - (2 (j)'(a (Xy 1--)'exp{-/[2(

. C(x- ix ) 2/a(+ (y-i y) '/a2f-20 (x-ij x ) (y-Ujy) / (aXay) (4.2.2)
xX X Y

where -<c)(y<O ,cr >O, and -1<P<l. If P 0. one can write

fxvy(x,y) as the product of N(u.,ar and N(ji,a) p.d.f.'s, implying

WO -
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that X and Y are independent if p 0 0. This suggests the following

well known theorem.

Theorem 4.2.1 If (X,Y) is a bivariate normal random vector, then

the correlation between X and Y is zero if and only if X and Y are J
independent. I
This theorem is the basis for many tests of independence, but often

its generalization to a nonparametric setting negates the "only if"

part of the theorem. I
In the parameterization (4.2.2) one may seek statistical

estimators of p and examine their properties. These statistics may 1
then be employed in testing procedures to test for independence.

The usual approach is to use Pearson's product moment sample -i
correlation coefficient I

n /n n
r w (Yk-Y) (Xk-X) Z k (4.2.3)

kil I k-I

which is the maximum likelihood estimate for p given a random sample I
(XY .... (Xn Yn) from a bivariate normal distribution. Under 3
H :o-0, one has

0n
r/V(n-2)/(-r 2) - t (n-2) . (4.2.4)

_ _ _ t NU

For testing K0: p-O vs. HI pile one rejects H at level a if

I
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IriV(n-2)/(l-r) > t(a/2;n-2). (4.2.5)

The usual nonparametric approaches to tests of independence are

patterned after these normal concepts, i.e., they seek to estimate a

population correlation coefficient nonparametrically and base tests

on this estimate. Unfortunately, most nonparametric approaches must

assume bivariate normality for this approach to be a legitimate test

of independence. Huber (1981) notes that r in (4.2.3) is

distribution-free under an assumption less restrictive than

independence of the bivariate observation (namely, exchangeability of

the joint n-vector of X or Y values is assumed), but he observes that

I r is not invariant to monotone transformations and is very sensitive

to outliers in the data. The approaches considered in the next

I section attempt to overcome such weaknesses.

I
4.3 Some Concepts, Ieasures, and Tests of Independence

* I
The primary reference for this section is Lehmann (1966). A

Ibrief discussion of the more common nonparametric tests of

independence will be followed by a discussion of some useful concepts

and measures related to testing for independence. As usual, tests

I will be based on a bivariate random sample (XiY 1) .... (XnYn) with

assumptions concerning the bivariate distribution of (X,Y).

The discussion of simple linear rank statistics of the form

Sn al c (Q a(R (4-.3.1)
k- 1

I
1
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.1
where Qk - rank(Xk) , Rk * rank(Yk) , and the functions c(i) and a(i)

are specified score functions, may be found in Serfling (1980) or I
Ruymgaart (1974). To test the hypothesis HO: p-O vs. some alternative.J

for a suitably defined correlation coefficient o one may consider

estimators of the form J
n n n

T n I k )---][a(Rk) -a]/ I Cc(Qk)-c-J" I Ca(Rk)--az (4-.3.2)
k-I k=I k=In n

where E, (1/n) I C(Q k) and !- (1/n) I a(R k ). Observe that T
km I k. k n

depends on the sample only through the simple linear rank statistic

S . T is defined analagously to Pearson's product moment sample
n n

correlation coefficient, but it has the important additional feature 1
of being invariant to monotone transformations of the data since it

depends only on the ranks of the observations. I
An important special case of (4.3.2) is given by Spearman's Rho.

Let a(i)-c(i)-i so that

S - k QkRk .  (4.3.3)

Using the convention of ordering X values and letting Rk be the rank

of Y corresponding to Xk , (4.3.3) becomes II
nSn klk-k (4-3-4)

k-I0

When X and Y are independent, S is AN(inta ,n) wheren n

I

, I I I I~. I . .. . . .. _ ... ._1 ..
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i un(n+l)2/4, a2nn"(nI-1)1/[l44(n-l)]. (4.3-5)n

i Def ine

Pn i - 6 1 (Rk-Qk) 2/[n(n2"l)] (4.3.6)
k-i

I which is the Spearman sample correlation coefficient, often called

Spearman's Rho (Spearman, 1904, as referenced in Randles and Wolfe,

1979). The population parameter that pn is estimating !s given by

P - 3 Cov sgn(X2 -Xl) ,sgn(Y 3 -Y1 )). (4.3.7)

For testing H0 : p-0 vs. H1 : pOO, using Pn, critical values may be

found in Table 10 of Conover (1971).

Ig Another popular nonparametric correlation coefficient is

Kendall's Tau (Kendall,1938) based on the concepts of concordance and

I discordance.

.3 Definition 4.3.1 Two pairs (X.,Y.) and (X.,Y.) are concordant if

(X. -X.) (Y. -Y.) > 0 and discordant otherwise.

I .i J..i

I Define

- 2 PC(XI-X 2 ) (Y1-Y2 )>o] - 1 (4.3.8)

I or equivalently

!

Ii
NEW_-

I IIIII l I j P I I ]_ - - . c .mom
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T Cov[sgn(X 2-x1 ),sgn(Y 2-Y1)]. (4.3.9)

Estimate T by I
Tna2 Un - 1 (4.3-10)j

where Un is a U-statistic defined by

U [ ,/() . h(Xy),(Xj..)] (43..11) 1
for the kernel h given by

h[(XiY ),(XjY.)) - I[(x i -x J ) (Y.-Y.)J

"sgn(Qi-Qj)sgn(Ri-R j ), (4.3.12)

where I(.) is the indicator function defined to be I if the argument

is positive 0 otherwise. When (X,Y) is a continuous random vector,

the theory of U-statistics yields the limiting null distribution of d

U . When X and Y are independent,

Un/[n(n-1) (2n+5)/181 N(O1). (43.13)

Conover (1971) describes the usual testing procedure and illustrates 11
computational strategies for employing Kendall's Tau in tests of

independence. Table 11 of Conover (1971) gives critical values and a jj

Ii
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description of the testing procedure for Kendall's Tau. Lehmann

(1966) relates this procedure to the difference sign covariance test

and suggests similar tests based on the ideas of concordance and

discordance. Hajek and Sidak (1967) show that the projection of

into the class of linear rank statistics is equivalent to Spearman's

Rho.

Ro Blomqvist (1950) develops a procedure that counts the number of

data points lying in quadrants I or III when the origin is taken to be

(XoY'). He considers the specific case where X 0 is the median of the

X's in the sample and Y0 is the median of the Y's. Let

I q - P[(X -X O) (Y -Yo)>0 - P[(x -XO) (Y -Yo)<O

I - 2 P[(X-X O) (Y-Yo)>O] - 1 (4.3.14)I
and estimate q byI4

Q = 2 Un - 1 (4.3.15)

I where

n
U n (1/n) I 1((Xk'XO) (Yk-Yo)3" (4.3.16)' n k=1

II
Blomqvist (1950) derives the asymptotic normality of Q for a wide

range of underlying distributions.

Hoeffding (1948sa) discusses some of the above tests in his

I
I
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classic U-statistic paper and presents the following alternative test

in the sequel to this paper (Hoeffding,1948b). Let _

m I i

A(F) - f'f'[F(x,y)-F(x,-) F(,y) jdF(x,y). (4.3.17)

Observe that AF) - 0 is equivalent to X and Y being independent.

Thus a test based on an estimator of the functional A(F) would be more I
general than those described above. Let

ID(ZIZ 2 PZ3 ) I (Z2 -Z1) - I (Z3 -Z1) (4.3.18) 1
and define the kernel h by ]

h[(x 1 ,x 5.... x5,y )) - (1/4) I l (x 1 ,) ID2, (x Jx x

I (y ,y ,y ) I D(y y4.y. (4.3.19)

Then

Un  - /(n) ] h[(X |, i) ( t, Yi.0

alY 2i()~U1 *V ),....(xi 5P. 5 (4.3-20)

is a U-statistic tiat is. unbiased for estimating i(F). The theory 1
behind this approach requires only that X and Y be continuous random

variables. Hence. this is one of the most general nanparametric tests [
of independence available. The generalization from a parameter P to a

functional A(F) is a very important step in derving new

aiI'
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nonparametric tests of independence that are more powerful than

existing procedures. This functional approach will be adopted in the

sequel using information functionas relevant to the problem of

interest.

Given the disparity between nonparmetric tests of independence,

one is naturally concerned with the sensitivity of the various test

statistics to specific types of dependence between random variables.

Hoeffding's procedure based on A(F) seems to be the most sensitive of

the approaches mentioned, but due to computational complexity this

procedure has not been widely adopted. Lehmann (1966) introduces some

concepts relevant to studying dependence between random variables and

relates them to existing testing procedures.

Oefinition 4.3.2 A pair (X,Y) of random variables is said to be

positively quadrant dependent if

I P(XSx,Ysy) k P(Xsx) P(Y5y) (4.3.21)

for all x,y. If the inequality is reversed in (4.3.21), then X and Y

are said to be negatively quadrant dependent (NQD). If the inequality

holds for at least one pair (xy). then X and Y are said to be

strictly quadrant dependent.

Lehmann (1966) states several theorems relating to positive quadrant

3 _dependence. Some general results are given in the following remarks.

I-
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Remark 4.3.1 Any bivar;ate normal random variables with 0 > 0 are

PQD and with P < 0 are NQD.

Remark 4.3.2 If X and Y are PQD, then Spearman's Rho (4.3.7),

Kendall's Tau (4.3.8), and Blomqvist's q (4.3.14) are all nonnegative.

Remark 4.3.3 If X and Y are PQD, then cov(X,Y)SO. This I

generalizes Remark 6.3.1 and relates quadrant dependence to

covariance. This fact is based on a result due to Hoeffding which

states

Cov(X,Y) - Jf°f[F(x,y)-F(x,-)F(-,y))dxdy. (4.3.22) 1

Observe that dividing inequality (4.3.21) by the positive quantity -
P(X!Sx) yields

P (Y!Sy IXSx) 2P (Yesy) (4.3.23) j

which implies that a knowledge of X being small increases the

probability of Y being small. This property is extended to the B
concept of regression dependence.

Definition 4.3.3 If (X,Y) ;; a pair of random variables, then Y

is oos7ively rearession dependent (PRD) on X if P(Y!SyJXkx) is I
non-decreasing in x. If P(Y;ylXmx) is non-decreasing in x one says II
that Y is negatively rearession dependent (NRD) on X.

I
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Remark 4.3.4 Regression dependence is asymmetric, i.e., Y is PRO

on X does not imply X is PRO on Y. For an ex3mple of this asymmetry,

see Lehmann (1966. pp.11 4 5-11 46).

Remark 4.3.5 If Y is PRO (NRD) on X, then X and Y are PQD (NQD).

The converse is not necessarily true. Hence, regression dependence is

stricter than quadrant dependence.

An even stricter condition than regression dependence is given by

the following definition.

Definition 4.3.4 Two random variables X and Y are said to be

positively likelihood ratio dependent if their joint c.d.f. satisfies

f (x,y') f (x ,y):f (x.y) f(x' ,y') (4.3.24)

for all x < x', y < y'. If the inequality in (4.3.24) is reversed, X

and Y are said to be necatively likelihood ratio dependent.t

Remark 4.3.6 Likelihood ratio dependence implies quadrant

dependence and is symmetric in X and Y.

Remark 4.3.7 Any bivariate normal random variables with p > 0 are

positively likelihood ratio dependent and with p < 0 are negatively

likelihood ratio dependent.

N

Io
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I
The concepts of regression dependence and likelihood ratio

dependence are primarily employed to verify quadrant dependence. The

property of quadrant dependence is one of the weakest conditions of

dependence for which the popular nonparametric tests are sensitive.

The last part of this section suggests some parameters that seem as J
general as Hoeffding's A(F) in detecting any form of dependence

between two r.v.1s.

Kimeldorf and Sampson (1978) consider a condition known as

monotone dependence which requires the existence of a monotone J
function g for which P[Y-g(X)J-l. This condition is very restrictive

and implies total predictability of Y from X. A less restrictive

measure of monotone correlation is thus proposed. I

Definition 4.3.5 The monotone correlation p* between two r.v.'s

X and Y is given by

0* - sup{Pf (X) ,g(Y) }, (4.3.25) ]

where 0 (XY) defines the correlation between X and Y and the j
supremum is taken over all monotone functions f and g for which

O<Var[f(X))<c- and O<Var[g(Y)]<-. I

One may compare this to the sup correlation introduced by Gebelein

(see Kimeldorf and Sampson (1978) for reference) which is equivalent

to p* except the supremum is taken over all Borel-measureable

functions f and g. These concepts are more mathematical than

a
iU
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statistical and are only applied when the parent distributions are

known. Kimeldorf and Sampson (1978) do not suggest any estimators for

their correlation parameter nor do they propose any testing procedures

utilizing the concepts developed. They do, however, point out the

desirable property that P*=O is equivalent to X and Y being

independent, and hence they have developed a correlation parameter of

special interest in tests of independence. Apparently sup correlation

has this same property. One need only find estimators of these

parameters to develop a powerful nonparametric test of independence.

Clearly this is an awesome task that has yet to be full ' implemented.

Hajek and Sidak (1967) identify locally most oowerful rank tests

(LMiPRT) for testing for independence. Hoeffding (1948b) discusses the

problem of obtaining unbiased tests against all alternatives. Blum,

Kiefer, and Rosenblatt (196i) suggest a competitor to Hoeffding's

U-statistic approach based on a statistic analagous to the Cramer-von

tiises goodness-of-fit statistic, but their approach is aS

computationally complex as Hoeffding's approach and has received

little attention in statistical applications. Gibbons (1971) and

Conover (1971) c onsider some traditional requirements that a measure

of association is expected to satisfy and check t~liese requirements for

the popular nonparametric statistics. They fail to suggest updating

3 these requirements to included estimators of functionals like the one

proposed by Hoeffding (1948b). Until estimators and testing

3 procedures are developed for the correlation parameters considered by

Kimeldorf and Sampson (1978), the use of functionals to measure

V I dependence seems to be the most promising method of developing general

I
a
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nonparametric procedures for bivariate data analysis.

4.4 Bivariate Density Estimation Using Information Criterion

Let (X1 ,Y)...(XnYn) be a bivariate random sample with joint

c.d.f. FXy marginals FX, Fy, and associated functions under the

usua; notation. Form the uniform bivariate sample {
(Ql/(n+l).Ri/(n+l)),...,(Qn/(n+),Rn/(n+-)) where Qj- rank(Xi) and

R. rank(Y.). One may then treat this as a sample from the dependence I
density d(ul,u 2) to form estimates d(ulu 2 ) using generalizations of

the techniques of Chapter 3.

The nearest neighbor techniques of section 3.2 requires no

generalization since it was designed for multivariate density

estimation. The theorems stated hold for the bivariate case. Onej

notes that this technique has an advantage over other bivariate

procedures in that subjective considerations of the smoothing I

parameter k(n) are not unduly complicated by multivariate

generalizations. The value Vk(x), however, becomes more complicated

in higher dimensional settings. This remains one of the easier

computational techniques in the bivariate case when compared with

other approaches.

Cacoullos (1966) generalizes kernel density estimation to include

multivariate estimators of the form

p n
f (x ... Xp) (1/nT h.) I KrX I-X j)/h, .... (x p-X p)/h J. (4.4.1)
n I p i=l j=l pp

I _____ ...
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g Often one chooses the kernel function to be a product of univariate

kernels. Cacoullos (1966) proves multivariate extensions to most of

the theorems found in Parzen (1962). In the bivariate case, one has

* n
f (x,y) - [I/n(hIh 2)] 1 K[(x-X )/hI , (y-YV)/h 2 j (4.4.2)

n j=)

which is usually taken to be

In
(xy) - [1/n(h h 2)] KI[ (x-x.)/h I K [(y-Y2)/h2 (4.4-3)

n 1 j =1

for univariate kernels K and K 2  For this estimator, the window

width problem is essentially raised to a power of 2. For example,

looking at estimates for three different window widths in the

univariate case would expand to looking at nine different estimators

3 in the bivariate case to include all possible combinations of window

widths. Nonetheless, this technique remains one of the more popular

Imethods of bivariate density estimation.
Tartar and Kronmal (1970) consider p-dimensional Fourier

expansion methods to obtain some theoretical results for multivariate

density estimation. Tartar and Silvers (1975) apply an orthogonal

expansion technique to the estimation of a bivariate density and

3suggest theoretical implications and applications for decomposing a

mixture of Gaussian distributions. We propose a new approach that is

based on the Tartar and Kronmal estimation scheme except that a

different estimation criterion is employed. The approach is motivated

by seeking a more sophisticated estimation criterion than the method

I -lr
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of moments and basing it on a "better" initial estimate that the

empirical c.d.f. We will introduce this new estimator by first

considering the univariate case.

Let X 1 ... X n be i.i.d. r.v.'s with p.d.f. f. Let log f be in

L"(ab). If {k(X)}1..a s a complete orthonormal system of functions

in L 2(a .b ) , t h e n

log f(x) I 8 0 k (x) - C (), a.Sxgb, (4.4.4)

k n-o-

where [ek) k_ are real valued constants and C() is an integrating

factor to insure that f(x) integrates to one. Following Crain (1974),

one may consider order m approximators

m
log f111(X) - k k (x) - c(e), asx ;b. (4.4.5)

k,-r

A m
and attempt to find estimates (E k k--m that possess desirable

statistical properties to yield an estimate of f (x).

If one chooses the criterion of minimum information, one seeks

parameter estimates that minimize I(f1 ;f m ) where

mm

log fre(x) - 1 0kok (x) - C(e), aSxdb, (4.4.6) II
m k--111 k= M

However, f is unrealizable so that the quantity l(f ;f ) can only be

examined from a limiting perspective as in Crain (1974). Furthermore, I
different choices of m yield different estimators with the ultimate

goal being the estimation of the true density f. U

I
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To overcome these problems consider an alternate definition of

information. Recall the definition of the bi-information between two

densities given by (2.3.10). Using this measure of information as an

estimation criterion, the problem may be rewritten to resemble an

exercise in continuous parameter regression analysis.

Let f be a "raw" estimator of f satisfying

i) fn -f in q.m. or a.s., and

ii) [f (x)} is asymptotically a Gaussian process.

nni Conditions (4.4.7), Theorem 3.1.1, and Theorem 3.1.2 guarantee the

~appropriate behaviour for log fn as required below. The conditions

are stated in terms of f since this is how they are usually found in
n

tthe literature. Consider the approximate model

m
log fn (x) = 7 ekk(x) + a G(x), aSx ;b, (44.8)

" k=-Mn '

where G(x) is a Gaussian process and n is a "generalized variance".n

Using bi-information based on empirical measure and representation

(4.4.6) for an estimator of f, observe

S b m
1I(f ;f log f(x)- e.dx) F (x)

n m fa no km.rnk k adn

n ~ m(1/n) Il Iog f(x.)- 1 (X. (.4.)(1/n) n i kmk k (

NO OVI
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The constant term in practice is omitted during the parameter

estimation phase and re-introduced later as an integrating factor. I
Equation (4.4.9) indicates that minimum bi-information estimators are

equivalent to least squares estimators. Estimators of the form

(4.4.6) may then be easily derived using one's favorite least squares j
regression computer program. Furthermore, if fn (x) is chosen so that

log fn is in L2 (ab), the approximation theory for Hilbert spaces

insures that the least squares estimates of the parameters will be

Fourier coefficients for a suitably orthonormalized system of

"independent variables".

One still faces the problem of determining the "optimal" order m,

but in the regression framework several approaches are suggested.

Hocking (1976) considers a variety of stepwise regression techniques

that may be useful in selecting a best order m. Time series criterion I
functions used in determining optimal orders for autoregressive models 1
may also be useful, Parzen's CAT (Criterion Autoregressive Transfer)

function and Akaike's information criterion (AIC) function being

primary candidates for consideration. The RISE c-iterion of Tartar

and Kronmal (1970,1976) may also be employed. fi
To emphasize the Hilbert space approach to approximation theory,

suppose that the estimator log f is deined so as to be squaren

integrable (which is usually the case since most estimates will be

bounded with finite support). Let { k(x)co be an orthogonal system

w.r.t. dF (x), i.e., II

f (x) j(x) dFn (x) (i,j), (4.4.10)

U
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where 6(0,j) is Kronecker's delta. Observe.

b m
I I (fn;fM - b I og fn(X)- 1 e, ,.(x) 'dFn (X)

a k=-mk k

-m

Ilo g f n (x) I IdFn Wx + I, I k k dFn xa 2 a -kk (x) I dFn (x)

m b ~xJ~C

-m k- a o fn(X)] k ( dFn(x).

Squaring the appropriate terms and taking advantage of the

j orthogonality property (4.4.10) one obtains

m - m
I1(f n;f) - (1/n) log f n(X ) + 1 k"

m n n

LI n
-2 1 mk[(I/n) I log fn(X.) (X.)).
k=-mk im n 1

I
Taking derivatives w.r.t. eK and setting the equations equal to zero,

one has

n

k k (1/n) I log fn (X) k(Xi), (,5,11)
k ~i=l

which is the Fourier coefficient of the expansion (4.4.5) w.r.t.

empirical measure. One may easily verify that the estimates defined

by (4.4.11) indeed minimize II(f n;f m) so that a minimum

bi-information estimator has been obtained.

For the estimator fro(x) given by
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,, m

fW(x) - exp my ekqk(x) (4.4.12)
m k--rn

to be consistent, the estimator f (x) must be chosen so that 4

[log f (x)log fm (x)] - o(l/vn) a.s. (4.4.13)

By Minkowski's inequality, .

I log fm(x)-log f(x)II - fllog fm(x)-log fn(x)+log fn (x)-log f(x) l,

I
Sllog fm (x)-log f n(x) I I+ Ilog f (x)-log f(x)II.

The second term of the right hand side of the inequality converges

almost surely to zero by assumptions (4.4.7), and hence f (x)

converges almost surely to f(x) by assumption (4.4.13) and Theorem J
3.1.1. Although this result seems straightforward, one observes that

it may be very difficult to verify assumption (4.4.13) for a

particular estimator f (X because of the difficulty in understanding

the behaviour of the two estimators as both m and n approach infinity. II
To show the asymptotic normality of fm(x), let conditions (4.4.7)

and (4.4.13) hold with log fn (x) being AN[log f(x),0n'. Furthermore,

let the asymptotic variance %2 be independent of f(x) and let n'O and II
nas-O as n-K. This usually foi1--ws when f (x) is consistent fornn

estimating fix) and taking the logarithm of f n (x) is a variance

stabilizing transformation. Then

I
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[log M(X)-Iog f(x)]/o n

- Dog fm (x)-log fn(X)I/an+ [log fn(x)-log f(x))/ n

(1/ nA -E)log f m X-Iog fn(X)] + Clog f nx)-log f(x)3/a

I (1/0nn) A (n) + B (n)

1
By assumption, (1/a n)-,o as n- , and by application of (4.4.13),

(I/a n ')A(n)- O in probability as n- o. Furthermore, S(n) convcrges inn

distribution to a N(0,1) r.v. by choice of initial estimator f ix),

and hence by Slutsky's Theorem, log f (x) is ANElog f(x),cal].
m n

3 Condition (4.4.13) severely limits these results and has not been

shown to hold for any of the common nonparametric estimators. The

nearest neighbor estimate satisfies the asymptotic normality

requirements with stabilized variance, but the more stringent

I condition (4.4.13) has not been verified. Nonetheless, the estimator

f (x) is intuitively appealing as well as being the optimal estimator
m

by use of an information criterion. Applications considered in

Chapter 6 will further support the use of this new estimator by

considering comparisons with some of the nonparametric density

estimators discussed in Chapter 3. However, our main concern is

bivariate extensions in the quantile domain to overcome some of the

U weaknesses of other bivariate density estimators.

3 IThe extension of the orthogonal expansion technique to the

bivariate case is relatively straightforward. A bivariate orthonormal

I
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system is fairly easy to obtain as the following theorem indicates.

Theorem 4.4.1 Let {0k(x)k0= _be a complete orthenormal system for

L2 (a.b) . Then {j(x) kY) is a complete orthonormal system for

LI(A) where A-{(x,y): a:Sx,y b 1.

bb
Proof: f f (x) (Y)[k(X)) (y)] dx dy

aa

=f ) [i(Xk((x)] dx f E(y) d(y)] dy

a a ii
I if i-k and j-l

0 otherwise. j

Hace is an orthonormal system for L(A). To show

that this system is complete, first observe that if g(x,y)e L2(A),

then for fixed y. treated as a function of x, g(xy)cE L2(a,b), and

vice versa. Define

h(x) - fb~k(y) g(x,y) dy.
a

Then I

bb
fa j (X) k ( Y) g(xy) dx dy - 0
aaipi

implies IL
ri
I.
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b
f 0 (x) h(x) dx - 0
a

and by completeness of O4 kfx)} it follows that h(x)=O a.e. Thus, by

definition of h(x)

Ib
fOk (y ) g (xy) - 0

a

which implies for fixed x, g(x,y)imO a.e. Reversing the order of

integration one obtains g(x,y)O a.e. and hence {4 (x)0k(y)l is a

complete orthonormal system for L2(A).m

I This theorem allows us to employ one of the many popular univariate

orthonormal systems in the approximation of bivariate densities.

Orthogonal expansion techniques still possess the problem of

choosing an order of approximation. However, as with nearest neighbor

density estimation, the problem is not as sensitive to dimensionality

I increases as with the kernel method. Tartar and Kronmal (1970,1976)

suggest a stopping rule in sequentially adding terms that is based on

the sample mean integrated square error. Such stopping rules are

useful hut may prevent one from observing interesting shapes that may

result from addition of extra terms. Furthermore, some degree of

I subjectivity is always inherent in order selection criteria despite

heuristic motivations.

To use the techniques of section 3.4 applied to estimating

d(u1 ,u2), the following theorem is necessary.

I
I
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Theorem 4.4.2 Let log fx' log fy be in L2 (ab) and let log fxY

be in L2(A) where A is defined as in Theorem 4.4.1. If d(u1 ,u 2 ) is

defined as in (2.2.17). then log d is in L2 (B) where B is the unit

square, B - {(ul.u 2 ): OSu|,u 2 <l .

Proof: Observe
I

fofo Ilog d(u1,u2)I2 duI du2  j

So fo 1 'ofgf, ( N(uI),Qy(u2))/f (Ox (u ))fy (QY(u2))J 1du du2

oo ,Y I 2X I Y Y21 I
f log fx,Y(Qx(Ul QY(u2 ) ) - I g fQx(ull))-log fY(Qy (U2 )J duldu2

• " f I{log fx,Y(Qx(ul),Qy(U 2))Ia+llog fx(Qx(u))I(

+(cross product terms) } du1 du 2

j
S f [f1 (log fX Y Jduldu2  + fo (iog fXl duI

+ ' I og fyIdU2 + 2 f00 I log f 'Y log fxldudI du2

+ 2 f log f log f,dudu d + 2 f f I log log f,du,du .,

by Minkowski's inequality, where we have adopted the abbreviated 1
notation



=1

II

I fx,Y fX,Y(QX(UI)QY(U2)) f f (Qx(ui))' fY" fY(QY(U2))

By assumption, the first three terms on the right hand side of the

inequality are fintite. By Holder's inequality,

1 1 1 11

f f0 )log fx,Y log fxjduIdu 2 S E f0 f log fxyduI du 2

Cf jiog fx~du1 <,

with the last inequality following by assumption. The finiteness of

the remaining terms follows similarly, and hence the theorem is

I proved.w

The fact that log d is in Lz(B) allows an orthogonal expansion of

log d, and hence one can apply the approximation techniques of section

3.4.

The use of complex exponential orthogonal systems in a Fourier

expansion will necessitate the use of complex least squares procedures

to carry out the minimum information approach. Specifically, one

considers the expansion

log 4(ul,u 2) - Z .k(u)O (u) - C(0) (4.4.14)
J,k-oJ.

where the {k , are complex valued parameters, 4 ,~)}m .  is a

univariate complex orthogonal system, and C(O) Is a complex

integrating factor. Since log d(u1 ,u ) is real, the contribution of

I

I
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the complex terms must vanish. This will occur if conjugate pairs

always appear together. For a finite parameter model of order m, one

m
estimates the ( }k by complex least squares after deriving an

jk j,k--m

initial estimate d(uilu _ of d(ulU.u The minimum bi-information

estimate d(ul,u is then obtained from the model

Ma
A m A

log d(u 1 ,u 2 ) - i ,mjk . (u - ) ¢ k(u2) - C(e) (4.4.15)j , k=-m J JI

where C(e) is chosen so that d(u,u 2 ) integrates to one.

Some consequences of this approach are worth noting. If the

initial estimate d(u ,u ) is also derived using only the rank

transformations of the data, then d(U ,u) is a fully nonparametric

estimator requiring only an assumption of continuous data and square

integrability of the logarithms of the underlying joint and marginal

p.d.f.'s. Furthermore, d(ul,u 2) is invariant to monotone ]

transformations of the data since it is a ranking procedure. The

parametric representation of d(ul ,u2) permits complete specification j
of the model by only knowing the values of m3 estimates of the

parameters unlike the nearest neighbor, kernel, and penalized

likelihood approaches. The problem of defining the region of support

is surmounted by the uniform transformations to the unit square. The

estimate also possesses many of the desirable properties of its

univariate counterpart although asymptotic properties are confounded

further by approximating a uniform data set by rank transformed data. U
The problem of smoothing or order determination has many

heuristic rules of thumb all of which need further researci. The CAT 0

I--I
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and AIC criterion functions seem to recommend too many parameters in

initial investigations done by the author, while a minimum information

(maximum entropy) criterion seems to pick too few parameters and hence

produces an overly smoothed estimate. As mentioned earlier, Tartar

I and Kronmal (1970,1976) suggest a minimum MISE criterion that picks

the smallest order m such that

S0 0 > (n+l)'. (4.4.16)I mpm -rn,-m

One is naturally concerned that the inclusion of too many parameters

will introduce spurious modes, so one recommendation is to produce

* three estimates with varying degrees of smoothness. One may then hope

that the physical constraints of the problem or the expertise of the

experimenter will aid in model selection.

Interpreting three dimensional graphs and contour plots of

estimates of the dependence density is particularly difficult, due ;n

I part to the radical nature of this approach to data analysis.

Consequently, one may prefer to form estimates of the bivariate

I density-quantile function fQ(ul,u2 - f(Qx(ul),Qy(u 2)). The approach

we favor forms

I fQ(u ,u 2) d(u 1,u 2) fQx (U l) fQy (U2 ) (4.4.17)

where 2(UU2  is a minimum bi-information estimator of d(u1 ,u2) and

the estimated density-quantiles are obtained using the autoregressive

method. This approach allows one to take advantage of the

I'-- ,.~ ...- - . .-. : . .
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autoregressive approach to univariate data modeling. Goodness-of-fit

tests may be conducted for null distribustions of the univariate

densities.

Experience with this approach reveals several interesting

features that are of importance in bivariate data analysis. For local

alternatives to independence, in particular, for cases when the linear

correlation exists and is "small", the univariate density-quantiles

dominate the shaping of the bivariate density-quantile. If either

univariate density is bimodal and the correlation is small, d(ul,u 2 )

will closely approximate a flat surface so that the influence of the

bimodal univariate density will create a bimodal or multimodal

bivariate density-quantile. However, when two random variables are

highly correlated, the dependence density dominates the shaping of the

bivariate density-quantile and tends to smooth out any anomalies in

the univariate density-quantiles.

In practical applications one is particularly concerned that a

univar;ate density estimation technique not introduce modes that will J
unduly affect the bivariate density-quantile function. An example in

Chapter 6 illustrates a situation where an outlier in a data set A
introduces a spurious mode in the univariate density estimate of one

of the variables thereby causing the bivariate fQ function to be

multimodal. The estimate d(u1 ,u2) is unaffected by the outlier, but 1
the autoregressive approach is ,nduly influenced. For this example,

the outlier was easily detected so that it could be removed, but one

remains concerned about the sensitivity of the autoregressive

estimate. In particular, one is interested in the ability of the AR II

-. - '
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approach to detect unimodal and bimodal shapes. since clearly outliers

that cannot be explained by measurement error usually suggest

bimodality. A study was performed for 50 iterations of three types of

samples of size 100. The first sample represents a N(O,1)

3 distribution, the second represents a sample from the mixture

0.5 N(O,1) + 0.5 N(2,2), and the third sample comes from the mixture

0.5 N(0,1) + 0.5 N(3,2). The results are given in Table 2. Order 0

U values indicate "acceptance" of a null hypothesis of normality. Order

1
l Table 2. Monte Carlo Study of CAT Criterion for Density Estimation

Sample Order Frequency

N (0, 1) 0 42
1 7
2 03 14 0

.5 N(O,1) + .5 N(2,2) 0 26
1 19
2 1
|° 3

1

.5 N(O,1) + .5 N(3,2) 0 51 36
2 5
3 134 1

I 1 values suggest slight skewness and hints of bimodality. Order 2

values suggest bimodality with possible hints of trimodality, etc.! .!..-.-~.
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When the modes are distinct as in the third case, the AR modeling

approach performs well, whereas in case 2 the technique found it

difficult to distinguish the modes. Note that high order selections

are very rare for "smooth" parent densities. One interpretation of

the selection of a high order is that outliers may be present in the

data, which is useful for the application of bivariate density

estimation to data analysis.

In Chapter 6 we will illustrate the use of the estimated

bivariate density-quantile to !ocate modes in a bivariate

distribution. Naturally, one may wish to investigate this approach

with different estimators for the univariate density-quantile

functions, but as stated, we feel that the AR approach has the most I
objective and consistent results.

4.5 Some Entropy-Based Measures of Association

In section 4.2 some popular nonparametric tests of independence I
were considered and viewed in light of some concepts and measures of

dependence. The cbservation was made that only certain functionals

and variations of sup correlation were general enough to detect all J
deviations from independence. In this section a new functional based

on the concept of information is introduced that is as general as fi.
Hoeffding's A(F), and various testing procedures are proposed using

this new measure of dependence. II
Let (X,Y) be bivariate random variables with joint c.d.f. FX Y

joint p.d.f. f marginal c.d.f.'s F and Fy, marginal p.d.f.'s f Ii

,
t -I - - . .. ... .-...-.-.. .rr
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and fy and quantile functions QX and Qy. The dependence distribution

function D(u,.u2 ) and the dependence density d(ulu 2) are defined as

Iin section 2.2, equations (2.2.16) and (2.2.17). Using equation

(2.3.1) defining information, one obtains the information between the

joint p.d.f. fXY and the product of the marginals fX and fy by

I
I(fxY;fXfy) - fLf Ilogif xy(x.y)/fx(x)fy(y)J1

f " x,y'Y ) dx dy. (4.5.1)

g With the usual change of variable u, Fx(x) and u2 a F y (y), one

obtains

I ( X' ; x Y flog~f xY(QX (u 1) QY (u2) )/f X(QX (u1)) f Y(QY (u2))

fX,Y(QX(ul),Qy(u2)) qx(ul)qy(u2 ) duldu2  (4.5.2)

I which reduces to

(f f I f f Clog d(u1,u2 )J d(u,,u 2 ) duldu2

I - -H(d)0 (4.5.3)

Iwhere H(d) is the entropy of the dependence density. From the

information inequality one obtains

I
I
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I (fxY fxfy),0 ff fx,y(Xy)-fx (X) fy (Y), a.e., (4.5.4)

and thus equation (4.5.3) leads to new techniques for ascertaining

whether X and Y are independent.

The technique to be investigated will estimate H(d) by estimating

d and using various numerical or statistical integration procedures.

Then Monte Carlo studies will be employed to investigate the

properties of the estimator.

One solution is to estimate d by d and then form

H~d)- [109d(u ,u2) ] d D(u1,u 2)

(1/n) I log d(Qk/(n+l),Rk/(n+l)) (4.5.5)
k=1

where D(u ,u2 ) is the empirical dependence distribution function with
1 2

jumps of size I/n at the points (Q k/(n+l).R k/(n+l)). Recall,

Q -rank(X ) and R ktrank(Y ). Another solution might be to numerically
k k k k
integrate A

H(d) - f fl{og d(u9 u2)) d(u ,u2) du du2  (4.5.6) 10 0 2 2 1

at a suitable grid of points, but this approach seems somewhat

artificial with inherent extrapzlation problems that might provide

deceptive results.

To form d, one treats (Q /(n+1),R /(n+l))....,(Q /(n+]),R I(n+l))n [!
as a random sample from a bivariate uniform distribution and then

I
• _ _ ~ _ •

., ., i i iI I ' . .. i I'' "
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applies one of the density estimation techniques of Chapter 3 that

permit bivariate generalizations. Two techniques will be mentioned

here for obtaining H(d).

One approach is to subjectively decide upon the best window width

or smoothing parameter to produce a kernel or nearest neighbor

bivariate density estimate d(ulu 2) . One observes that such a

subjective approach unauly complicates the procedure, but such

problems cannot be overcome. The second approach is to form d(u ,u2
using d(u1 ,u2) as a dependent variable in the regression approach of

I the last section. One then may form estimator (4.5.5) or (4.5.6).

The parametric representation afforded by the regression approach

1 makes method two less computationally cumbersome than it would be in

I the first approach. Hence, one uses (4.5.5) for a suitable choice of

d and (4.5.6) for the parametrically smoothed bi-information density.

A Monte Carlo study of H(d) and H(d) has been carried out for 100I)
iterations of samples of size 50 and 100 for a bivariate normal

distribution and a distribution composed of one standard normal

marginal and another marginal corresponding to a conditional

Cauchy(O,1) distribution. The sensitivity of Pearson's r to outliers

I is well documented and hence is not investigated here. The

nonparametric procedures have well known robustness properties which

f are mimicked by the entropy statistics since the latter are

constructed using ranks of a "trimmed" data set. (A discussion of the

computer algorithm generating H(d) and H(d) may be found in the next

chapter.) Table 3 presents several quantile values for the various

entropy statistics for the sample sizes 50 and 100 obtained from the



120

simulations. The notation H(d8) refers to an order 8 expansion,

meaning that all 8 bivariate combinations of the indices (-).0,1) were -.

included. H(d24) contains all 24 combinations of (-2.-1,0,,2), etc.

Note that in each case the index (0,0) is excluded since the constant

I

I
Table 3. Quantiles for Entropy Statistics

n 1 H (o) H (d8) H(d24) H(d48) H (do) -H (d)
50 0.01 -0.222 -0.229 -0.293 -6.289 -0.206

0.05 -0.137 -0.179 -0.226 -5.294 -0.163
0.10 -0.100 -0.169 -0.202 -4.477 -0.144
0.25 -0.067 -0.145 -0.179 -2.838 -0.102

100 0.01 -0.251 -a.169 -0.197 -0.248 -0.029
0.05 -0.181 -0.139 -0.179 -0.204 -0.002
0.10 -0.157 -0.128 -o.163 -0.197 0.o18
0.25 -0.132 -0.107 -0.149 -0.174 0.048

.1

term has been incorporated into the integrating factor.

Power studies were conducted for various values of 0 for the 1
normal sample and for a sample (X1,YI) ,..... (nY n)  generated by YmX+C i
where X is a standard normal random variable and C is a Cauchy(0,1)

random variable. This model corresponds to a general regression model j
with Cauchy errors. It may be shown that Y is positively regression

dependent on X since the conditional distribution of Y given X-x is a I.
Cauchy with median x. Hence, only the normal theory statistic r will

have assumptions violated for this case.

The results for the power study may be found in Table 4. For J
n-50, the entropy statistics are disappointing in comparison with the

I
.... .. .. r . . . . . . .. - ...
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I

Table 4. Monte Carlo Results for Power Study of
I Measures of Association

significance level-0.10

N .RHO r- n n H(d) H(d8) H(d24) H(d48)
50 0.2 0.49 0.44 0.46 0.31 0.11 0.22 0.16

0.4 0.90 0.91 0.91 0.58 0.21 0.23 0.09
0.6 1.00 1.00 0 .59 0.71 0.31 0.32 0.15

100 0.2 0.67 0.66 0.65 0.37 0.18 0.17 0.19
0.4 0.98 0.98 0.98 0.53 0.51 0.48 0.42
0.6 1.00 1.00 1.00 0.98 0.91 0.90 0.86

Cauchy
100 0.32 1.00 1.00 0.90 0.95 0.96 0.94

For Cauchy sample, the g.o.f. statistic H(d-Normal)-H(d)

has power 0.88.

correiation statistics for local alternatives to c-0 in the normal

case, although H(d) is fairly competitive. This suggests that the

I density estimation approach should not be recoamended for small

samples, particularly using the numerical integration statistics. One

suspects that the problem of extrapolation has unduly weakened the

effect of the statistics, while for H(d) no extrapolation is

attempted. For n-lO0, the results are more promising, and for the

non-normal case, the entropy statistics perform well compared to

Spearman's Rho and Kendall's Tau, and, as expected, greatly surpass

the normal theory statistic r. For this study, we also included the

goodness-of-fit statistic

I
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H(do )-H(d) ( -(I/2) Iog(lr2) - H(d) (4.5.7)

whose quantile values obtained for the normal cases are also given in

Table 3. The power result of .88 suggests that this entropy based

statistic may be competitive with existing procedures for testing

bivariate normality. However, further simulations are warranted.

The poor performance of the entropy statistics suggests that some

modification be employed to overcome the consistency and power

problems. Rather than employ a numerical Riemann integral, an _

alternate approach is to consider the numerical Lebesgue integral for

orders 8, 24, and 48. Recall, the raw entropy statistics based on the

nearest neighbor estimate is a Lebesgue integral w.r.t. the empirical

c.d.f. To obtain a numerical approximation of the Lebesgue integral

for the minimum information estimators, the estimated dependence I
density is evaluated at a k by k grid of points in the unit square and

then is treated as a vector of dimension k2. One then forms the -'

corresponding vector of d log(d) values and obtains a robust measure -

of location such as the trimean that serves as a numerical

approximation to the Lebesgue integral. The amount of calculations

involved prohibit a large scale simulation of this approach, but

limited experience with some of the data sets considerd in Chapter 6 11
are promising at least for cases involving small correlations. The

corresponding use of quantile techniques to analyze the vector of d

and d log(d) values may aid in determining an appropriate order of J
expansion.

Without supporting theory, a general simulation study for a wide I

11



123

class of alternatives to bivariate normality is infeasible. The

results of Vasicek (1976) are promising but need to be extended to the

bivariate case. For the simulations performed, the neares. neighbor

density d was computed using k(n)-5. In practice, one might try a

variety of values of k(n) to arrive at a "pleasing" shape, and then

examine the entropy measures. Unfortunately, this subjective approach

:annot be incorporated into a simulation study.

4.6 Other Applications

4.6.1 Nonparametric Regression

Let (XIY I ),...,(Xn ,Y
n ) be a random sample from a bivariate

distribution with c.d.f. FX, Y  , p.d.f. fX,Y , and associated

marginal and conditional functions with the usual notation. One often

attempts to discern a relationship between X and Y in order to predict

Y given a value of X. An important object in this cases if the

r1gression function

r(x) E CYIxx - j=y f Jx (ylx) dy. (4.6.1)

From the definition of the conditional p.d.f. one may express (4.6.1)

by

r (x) a h(x)/fx(x) (4.6.2)

X!
p.'

4N,
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where

h(x) = cy fX,y(x,y) dy. (4.6.3)

Watson (1964) and Nadaraya (1964) as referenced in Cheng and Taylor

(1980) used representation (4.6.2) and kernel density estimation

results to suggest estimating r(x) by I

r(X) - (X)/i(x) (4.6.4)

1

where fi(x) is the kernel density estimate of f(x) given by

i(x) f [1/h(n)] KE(x-x')/h(n)]dF (x')
n

n
[I/nh (n) I K[(x-X.)/h(n)" (4.6.5) i

j=l

and h(x) is related to the kernel estimate by 7

h(x) - f'y Cl/h(n)] KC(x-x')/h(n)] dF (x',y) ii
n

I/nh(n)) ! Y K[(x-X.)/h(n)). (4.6.6)
j.l

Rosenblatt (1971) gives properties of r(x) and Cheng and Taylor (1980)

extend these to a more general case of a k-dimensional X-vector. This

technique is completely general and can be thought of as taking a

weighted average of Y values based on the X observations. This is

U
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easily seen by expressing (4.6.4) as

n n
r(x) _ I KE(x-X.)/h(n)]Y /I K[(x-XA)/h(n)]. (4.6.7)j=l Jj=l

The kernel K acts as a focusing function giving more weight to Y

values for X. in a neighborhood of x.

The representation (4.6.4) suggests a multitude of estimators

based on the various nonparametric density estimation techniques of

Chapter 3. Asymptotic properties may be intractable for many of these

cases, however. Nonetheless, one may seek to rewrite (4.6.4) to

permit application of some of the quantile based techniques mentioned

I previously.

In Chapter 2 we observed that (4.6.1) could be translated to a

rearession quantile function by the formula

I rQ X(u ) 1 0' Qy (u 2)  d (u I u 2)  du ,,( .6

where d(u ,u 2) is the dependence density. This formula is derived

from (4.6.2) with the transformation xQ x(u I) and y-Q y(u 2). One

i obtains

rQX(ul) f 1q Y (u 2) f ,YQ (U1 ) Qy(u2))/fX(QX(uI))] dQy(u 2)

0

I0 0 Qy(u2) [fX,y(Qx(ul),Q(u2))/fx(Qx(uI)) qy(u2 ) du2  (4.6.9)

I which then simpffies to (4.6.8) by virtue of the reciprocal identity.

I
I_. ri I
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Estimation of (4.6.8) may be obtained by numerically integrating

products of sample quantile and dependence density functicns. For

example, selecting a grid U21, .... U2m of equally spaced values

between 0 and 1, one obtains the Riemann sum

rQ(UI) (/m) .I y(u2j) d(UU2j) (4.6.10)

as an estimator of the regression function. A regression curve may

then be plotted for various values of ul. I

Parzen (1979a) emphasizes the conditional quantile function in I
approaches to nonparametric regression. He considers versions of

(4.6.7) in the quantile domain with emphasis on smoothing raw

regression function estimates based on empirical quantile functions.

In Parzen (1977), raw estimates of the partial derivative of D(ul,u2) 1

w.r.t. u I provide alternatives to (4.6.10) for estimating rQx(uI), but

this is proposed only as a "quick and dirty" technique. Our emphasis

on obtaining smooth estimates of d(u ,u2) should make (4.6.10) the J
preferred estimator of the regression quantile function, but in any

case, asymptotic properties remain to be investigated.

We have only examined nonparametric regression from a density

estimation approach. Huber (1981) suggests robust least squares I
procedures, and Hajek and Sidak (1967) consider some linear rank tests

for hypothesis testing concerning linear regression coefficients. We

have avoided any assumption of linearity in our discussion, but when

such an assumption is justified, nonparametric approaches to the

linear regression problem may be preferred. In a pure modeling

U,
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approach, one would desire some sort of residual analysis that tests

for white noise of residuals in an effort to evaluate the model given

I by (4.6.10).

S~4.6.2 Discrimination and Classification

Often one seeks to classify an individual with bivariate

characteristics (X,Y) into one of two parent populations. If data is

available on each population, one seeks to classify (X,Y) into the

i population that seems most closely related to (X,Y). If the bivdriate

p.d.f.'s fI (x,y) and f2 (x,y) of populations 1 and 2, respectively, are

i known, one forms the likelihood ratio

X(X,Y) - f I (X,Y)/f2 (X, Y) (4.6.11)

and classifies (X,Y) into population 1 if X(X,Y)2:1 and into population

2 otherwise. If the two populations have normal distributions with

common unknown covariance matrix E and different unknown mean vectors

P and P,., one obtains the corresponding sample estimates of these

quantities and forms the sample discriminant function

gW Ex - (1/2) (X- + s1 S~~ E -X (4.6.12)

where X'. (X,Y), X I - (XI,Y1 ), etc. One then assigns (X,Y) to

population 1 if W>O and to population 2 otherwise. Morrison (1976)

gives an adequate description of this normal theoreLic approach.

SI
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If the assumption of bivariate normality cannot be justified, one

may seek to estimate the unknown densities of each population to form

X f1 (XY)/f2 (X.Y) (4.6.13)

and proceed as before. An alternate approach is suggested working in

the quantile domain. For a sample from population 1, one estimates A

dl(Ul ,u2) and univariate c.d.f.'s F and F For population 2. 1
estimates of d(u ,u 2), G X , and G are obtained. One then forms

I d (X (X),F Y(Y))/d2 (G X(X),G Y)) (4.6.14)

and proceeds accordingly. Observe, if in sample 1,

(k)XX (k+l)' F X(X)- k/(n+l) is an acceptable raw estimate for

UIF x). One may prefer using estimates of the bivariate

density-quantile function over using estimates of the dependence

density. Such an approach, however, seems to assume equal marginals 3
for both populations. While probabilities of misclassification based

on (4.6.14) may seem difficult to obtain, this approach "exhausts the I
data" by utilizing all of the relevant sample functions (if only

indirectly) in creating the discriminant function. Thus, the approach

would seem more sensitive than an approach dealing only with

likelihood ratios in the densiLy domain, and hence one might expect

small probabilities of misclassification using this technique. This I
remains an open research question.

U
I



129

4.6.3 Parametric Modeling

A useful extension of the minimum information density estimation

technique concerns estimating parameters of a parametric model for the

purpose of ascertaining the adequacy of the model. Consider the

canonical exponential model of order m given by

m

log f(x)- ek T k(X) - C(0 .e... em) (4.6.15)

k= 1

j where TI (x),.....Tm(x) are called sufficient statistics. This density

maximizes entropy subject to the constraintsI
fj Tk(x) f(x) dx - Tk' kul,...,m, (4.6.16)

I where 1....,Tk are called moment parameters. This implies that the

normal distribution maximizes entropy over all other distributions

Iwith specified mean and variance. Using the minimum information

approach for the parametric model (4.6.15), one obtains least squares

I estimates for the model parameters which can lead to estimates of the

I moment parameters. Recall, from the theory of exponential models, one

has

I
(/ae c(6 1,....e - tk' (.6.17)

and hence under suitable regularity conditions the moment estimators

I.
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n
Tk (1/n) Y Tk(Xj), k-l,..,m. (4.6.18)

jkl

are also maximum likelihood estimators and thus the estimators

; 6k" (Tl ..... ). k-,...,m, (4.6.19) k

are m.l.e.'s by the invariance property. Hence, one may form the

least squares estimates and compare these to the m.l.e.'s for a

diagnostic check of the adequacy of the parametric model given by

(4.6.15).
.-A

Example 4.6.1 For the normal case, T (x)- x and T (x)-x2, so that {1 2

Ti',-J and T2 "ua+aZ. The canonica) parameters are given by 81-(Ija/")

and 62 '--/(2a
1 ). The regression approach would form estimators of the

parameters in the model'

log f(x) - a0+ 91x + e X2  (4.6.20)
0 1 2

with a stochastic element introduced when the nearest neighbor

estimate replaces f(x) in the model.

Example 4.6.2 For a gamma model with density 1

f(x) - (ba/(a)] xa-lexp(-bx), (4.6.21)

where x>O, a,b>O, the canonical form is I
1
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log f(x) 60 + 91log x + e 2 x, (4.6.22)

where T (x)-log x and T (x)=x with e,(a-1) and a2 =-b. For a

location-scale gamma model, problems are encountered unless the

I location parameter is known. For unknown location, one estimates it

gby the minimum value of the data and then treats this as the true

parameter value to be able to obtain the least squares estimates for a

I and b.

I This parametric modeling approach will be illustrated in Chapter

6 applied to normal and gamma data. Note that this technique is not

recommended for parameter estimation when the model is known to be

I valid, but instead is suggested as a method for checking the adequacy

of a model. One may wish to investigate distributional properties to

I suggest inferential goodness-of-fit procedures. Bivariate extensions

are fairly straightforward and will not be considered here.I
4.7 Concluding RemarksI

Perhaps the greatest weakness of nonparametric statistics until

now has been its failure to adequately handle multivariate problems.

The problem seems to center around the insistence upon carrying out

inferential procedures on parameters of a probability model and the

inability to nonparametrically estimate these parameters. For

g example, the contrasts of interest in an analysis of variance setting

often rely on robustness properties in the absence of nonparametric

I
I
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multiple comparison procedures. Heuristic solutions (such as

replacing the data by ranks) may appear to work in some cases, but

further study is warranted.

We have followed the recent approach of placing function

approximation ahead of parameter estimation. Naturally this is a more

difficult estimation problem, but once solved, it leads directly to a

solution to estimating parameters of interest. Unfortunately, most

techniques must reside in the category of the exploratory rather than

confirmatory because of the lack of theory to support the procedure. J
The acceptance of Monte Carlo studies has gradually improved over the

years, but unfortunately, function approximation does not lend itself

to general Monte Carlo experimental designs especially when seeking

comparisons for a wide class of alternatives. Many of the expansion

techniques have adequate theoretical motivation, the main problem

being that of order determination. Consequently, techniques such as

the autoregressive approach of Parzen or the orthogonal expansion

technique of Kronmal and Tartar that exhibit objective order

determining criterion are the most promising of those suggested in the

literature. This motivated the expansion techniques considered in

this chapter. Unfortunately, the criteria employed did not seem to

perform as well as hoped, but once a suitable criterion is obtained,

the minimum information technique will become even more useful than

approaches such as the kernel method that necessitate examining

multitudes of shapes to arrive at a conclusion. Furthermore, the

generalization of methods based on the dependence density to a

multivariate setting are fairly straightforward especially in the f

___ ii
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nonparametric regression framework. The sample size required in a

multivariate setting to adequately perform function approximation will

always pose a serious problem, however, and hence parametric

approaches will continue to dominate small sample settings when one

can justify the assumed model to any degree of satisfaction.

I

I
I
I
I
I
I
I
I
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5. COMPUTER SOFTWARE FOR BIVARIATE DATA ANALYSIS

5.1 Introduction

The major statistical computer packages have yet to fully enter

the fields of nonparametric density estimation or bivariate data I
analysis. Consequently, one must create his own computer programs to

carry out many of the procedures detailed in this work. For

nonparametric density estimation, most statistical packages will have I
histogram procedures, but only IMSL (International Mathematical and

Statistical Libraries) provides routines to do other types of J
nonparametric density estimation. When one ventures too far from

classical normal theory procedures or some of the more popular I
nonparametric techniques, the existing statistical software packages J
are of little help.

Ideally, the examination of density curves is carried out in an j
interactive computing environment so that shapes can be examined and

adjusted quickly to arrive at an "optimal" choice for the estimated I
density. However, the programs we will discuss were written in 5
FORTRAN for batch processing. This was done for a variety of reasons

which will not be discussed here. The translation of FORTRAN code

into an interactive language such as BASIC is not too difficult, and

some systems have time sharing FORTRAN capabilities. The system I
employed for our procedures has a "simulated" interactive language

that permits quick access to batch output at a CRT terminal. The

computing environment for program implementation will be discussed

~I
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later.

The writing of computer programs is considered to be an art by

some, and a particular program often mirrors something of the

personality of its creator. Thus, examination of the code that we

have written illustrates a certain philosophy of programming that will

be discussed in the next section. The actual programs that we have

written will be discussed in sections 5.3 and 5.4. We will conclude

this chapter by examining the facilities that were used and the

typical effort required to execute a program and retrieve the results.

5.2 A Philosophy of Statistical Computing

There are many ways to attack the writing of computer code to

carry out some desired purpose. The recent popularity and utility of

structured proaramming has caused it to be a widely practiced form of

program construction. The idea behind this approach is to carefully

organize a program so that it flows smoothly from one computation to

the next without haphazard placement of loops and branches. There are

, J a variety of ways to organize a program with this approach in mind.

One method is to create a bank of subroutines each of which is

carefully designed to carry out a specific task, and then write a

fairly terse main program that systematically accesses these routines.

Using this approach, one may discover that efficient routines already

exist that perform certain tasks, and hence one need not expend effort

in creating the routine oneself. The IMSL FORTRAN subroutine library

contains many useful techniques backed by extensive testing that could

I
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probably not be matched by a programmer with limited resources. Many I
systems maintain a variety of subroutine libraries and italogued

procedures that may be useful to programmers. With a collection of

tested subroutines at ones disposal, the trauma of debugging a large

program is greatly reduced. With this in mind, one may wish to insert
I

checks and flags in a routine to guard against its misuse in later

applications. An alternate philosophy adopted by some is to write

completely self contained main programs that systematically perform

every task in the main body of the program. Careful documentation of i
such programs make it easy for one to examine the code to discover

what tasks the program is performing. Arguments do not have to be j
passed back and forth to subroutines and array dimensioning is handled

only once without the need to trace dimension values throughout a

program. While this approach has some advantages, the major weakness j
is that a great deal of repitition may occur in writing the program so

that less effort may be spent thinking of new approaches or ways of J
making the program more efficient. We favor the subroutine approach

as one will soon realize upon examining our programs.

There are three goals inherant in computer program construction.

1) The program should correctly perform the task for which it was

intended.

2) The program should work, i.e., it should be reliable, anticipating

any awkward contingencies that might occur.

3) The program should be easy to read and easy to maintain.

I
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A fourth goal is often added to this list.

4) The program should be portable, i.e., it should be designed to work

in a general computing environment for a variety of computer

systems.

Using a popular language such as FORTRAN or COBOL and avoiding machine

dependent conventions should promote portability, although most likely

some translation will be needed when going from one system to another.

Since we anticipate that our programs may be used at more than one

computer installation, we have made some attempt to avoid machine

dependent conventions.

The goals presented above are important, but as with the theory

vs. simulation dilemma, one can never anticipate the infinite

possibility of data sets that may be exposed to a program. Therefore,

anticipating such problems as division by zero may promote the

efficient use of a program, especially if an error might occur in a

minor step not crucial to the general task of the program. Insertion

of options that default to logical values will also help insure that a

program completes its task despite minor errors of no consequence.

A wide variety of computer languages exist each aimed at

I empasizing a particular application. FORTRAN is designed for

scientific computations while COBOL is geared more towards business

applications. Thus COBOL my be better suited for character

martipulation while FORTRAN might be preferred for "number crunching".

ISince our main goal is one of computation, we have chosen to write our

I In t~~-r



138

programs in FORTRAN. Also, as suggested, a FORTRAN program may

written to be fairly portable. The only problems might occur in

certain format conventions or specialized functions such as array

manipulation. Furthermore, the popularity of FORTRAN will make the

code understandable to most users in case they wish to make

modifications tailored to their own specialized applications. A

Although many options are included in our programs, a user may wish to 1
add or delete options to reflect the specialized environment in which

he is working. The FORTRAN language has many qualities to recommend I
it which need not be discussed here.

Finally, we note that while efficiency is always an important I
concern especially in the construction of a large program, one may be J
more concerned with documenting and organizing a program so that it

may easily be used by others. Naturally, one seeks a suitable

compromise between efficiency and ease of use so that a program is not

prohibitively expensive or time consuming. Our first concern is for I
accuracy and precision. When these attributes are sufficiently -

safeguarded, then one may search for ways to make a program more

efficient. Clearly one does not desire a program that quickly and

efficiently computes the wrong answer, although this is a common

occurence in computer applications. More insight may be gained into I
this philosophy by a closer inspection of the routines we have

written. Some comments will be made about obstacles that had to be

overcome, and references will be made to the authors of contributing jj
routines. For a discussion of statistical computing one may consult

Kennedy and Gentle (1980), and for a general discussion of the science I"
Dl ,

I

.. . . . . . . . .



139

and art of computing, Knuth (1968) is a useful reference.

5.3 Univariate Density Estimation Routines

The popularity of the histogram makes it readily available from

many statistical computer packages. The Statistical Analysis System

(SAS, 1979) provides histograms in its CHART procedure. The BMDP

Biomedical Computer Programs (BMDP, 1979) provide two programs, BMDP2D

and BMDP5D, that produce histograms for a data set. MINITAB (Ryan,

Joiner, and Ryan, 1975) has a command HISTOGRAM that will produce a

histogram for a specified data vector. The Statistical Packdge for

the Social Sciences (SPSS, see Nie, et al., 1975) provides a histogram

through the procedure FREQUENCIES. All of these routine have an

objective default for computing cell widths and boundaries. For

example, PROC CHART of SAS by default will let m-FLOOR1I+3.3 log(n)]

where FLOOR is the greatest integer function and n is the sample size.

The range of the data is then divided into m equally spaced intervals

yielding h-range/m.

The histogram is the only form of density estimation available

from most packages. IMSL has two routines that offer alternatives to

the histogram, but it is the only major source of such routines.

Kernel estimation is performed by the IMSL routine NDKER for user

provided kernel and specified window width. The routine NDMPLE

performs discrete maximum penalized likelihood density estimation for

user specified smoothing parameter. These routines are well

documented and easy to use.
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For alternatives to the existing software, one may consult the

literature to obtain algorithms to be programmed. The moment

techniques of Cencov (1962) are easily programmed once one has

surmounted the problem of generating orthogonal systems of functions

in L 2 space. Tartar and Kronmal (1976) provide a very readable

account of implementing density estimation techniques. Based on these I
references and the use of such numerical algorithm sources as

Abramowitz and Stegun (1972), one may readily construct FORTRAN

routines to perform density estimation.

For the minimum information techniques developed in Chapter 4,

one may use existing regression software to implement the procedures. 1

However, for complex exponential systems some adjustments may have to

be made. The TIMESBOARD FORTRAN library of Newton (1979) contains

some useful routines for handling complex regression in addition to

many general purpose routines. An alternative to obtaining FORTRAN

regression routines to implement this procedure is to create a I
"regression data set" and use this as input to a procedure such as

PROC GLM of SAS. Other regression software may also be employed.

The author has written five FORTRAN routines to perform

univariate nonparametric density estimation. These routines along

with the IMSL routine NOKER will be applied to several data sets in I
the next chapter to illustrate their use. The five routines we have

written are called NNOEN (Nearest Neighbor), KTDEN (Kronmal-Tartar I
type with trigonometric polynomials), TKDEN (Tartar-Kronmal type with

complex exponentials), MIDEN (Minimum Information type with Legendre

polynomials), and CMPDEN (minimum information type with CoMPlex U

II
I
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exponentials). The routines NNDEN, KTDEN, and TKDEN are easily

written following the algorithms described in the literature and hence

will not be listed here. The routines MIDEN and CMPDEN are listed in

Appendix A. Appendices C and D contain a collection of subprograms

accessed by these procedures.

The density estimation routines werc written to accept standard

input and produce standard output within the routine, passing as few

arguments back and forth as possible. Our purpose for writing the

routines was to get plotted output quickly and efficiently for a

variety of smoothing parameter values. For more practical

applications, one may wish to pass the actual estimated density values

back to the main program to be used for further investigation or

analysis. This is easily accomplished by modifying the calling

arguments. The only problem might be in controlling the values at

which the density is evaluated, but routines are available for

interpolation if necessary. For the parametric orthogonal expansion

models, one need only pass paramter estimates with the corresponding

variable indices back to the calling program to be employed as needed.

As suggested, this is an advantage in using expansion techniques,

namely, that one need only knowledge of a few paramter estimates to

completely describe the estimated density rather than knowledge of

function estimates for a large number of values. For example, a

vector of size 10 may store all of the relevant information about an

orthogonal expansion approximation, while vectors of size 50 or more

are usually required for nearest neighbor, kernel, or DMPL type

estimates, depending upong the number of estimated values one wishes.

I
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Typically, the unique feature of each density estimation routine

is the algorithm employed to derive the estimate. Otherwise, each

routine has a general framework. This framework is outlined as

follows:

Input: Data (X), sample size (N), minimum value of data (A or XMIN),

maximum value of data (B or XMAX), and options (IOPTk).

Preprocess Data: If data is modified by an algorithm, let Y(I) - X(I) J
and use Y vector in the procedure. If trimming or scaling is

required, perform necessary transformations before exposing I
data to the algorithm. (Usually standardizing to an interval

(a,b) is performed within the algorithm to reduce the lines of I
computer code required.) I

Invoke Algorithm: Expose the (possibly transformed) data to the

algorithm to obtain parameter estimates or estimated density

values. The standard approach is to then obtain density i
estimates evaluated at N or 100 equally spaced values between J
XMIN and XMAX.

Compute Density Functionals: Two versions of each routine exist, one

applied to data with unknown distriburion and one applied to 1
data with a specified null distribution. For data with unknown IJ
distributions, estimates of the mean, variance, and mode are

obtained by numerical integration and grid search techniques U

I
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performed on the estimated dens'ty. For a specified null

distribution, estimates of integrated squared error, mean

squared error, and maximum absolute deviation are obtained in a

f similar fashion. The options allowed for null distributions

include normal, gamma, and a mixture of two normal densities

since these are the cases considered in Chapter 6.

!
Plot Density Estimates: For unknown parent distributions, a printer

Iplot is obtained displaying equally spaced X values, estimated

gdensity values, and the corresponding shape of the estimated

density. For specified null distributions, an overlay plot is

obtained with an additional listing of the null density values.

Examples of these plots will appear in Chapter 6.I
The options IOPTk usually involve choices of smoothing parameter

orders or null density values. They may also decide the number of1 : different estimates to be obtained. Output of plots and parameter

estimates is automatic, but the procedures may be modified by the user

to control output.

For the NNDEN procedure, if one wishes to obtain density

estimates at m points, roughly 4mn+kn+6 computations will be performed

for a data set of size n and smoothing paramater k-k(n). The most

involved step is finding the smallest radius r such that a sphere with

radius r centered at the evaluated data point contains k-I additional

points. To perform this computation, (n-l) radii are computed and k

Ucalls to routine MIN are made with Y(IMIN) being replaced by a large

W
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positive value each time. It is conceivable but unlikely that all

radii will be larger than this value, which is currently set at

7.OE+75. This is near the machine limit for single precision

constants and represents 7 followed by 75 zeros. Hence, it should be

suitable for most data sets. In the univariate case, increasing the

value of k does not severely lengthen the procedure, but the

multivariate analog can be unduly lengthened by large choices of k due

to the involved computations for the volume of a hypersphere.

The algorithms employed for the KTDEN and TKDEN procedures are -i

perhaps the easiest to program. The most difficult step is generating

a system of orthogonal functions. Since KTDEN and TKDEN compute j
moment estimators based on orthogonal systems of with pleasing forms,

I
the algorithms for generating density estimates are easily programmed.

The trigonometric polynomials or complex exponentials may be I
programmed directly into the averaging routine without problems of

generating coefficients as is the case if Legendre [-1,1) polynomials I
had been used. The data must be standardized to (0,1), but this is

easily implemented directly into the algorithms using the J
transformation (Y(l)-A)/(B-A) where A-min(X) and B-max(X) and Y is the 4
vector of X values described above. Estimates are then computed using

a truncated oder MN-m(n), with the maximum order currently set at 10. f
The vector THETA of moment coeficients computed for the orthogonal

expansion need only be computed once up to the maximum order by virtue

of the orthogonality property. Estimates of varying orders may then B
be obtained by simply calling for the coefficients needed. The

routine TKDEN computes a best order using the RISE criterion, while U

II
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KTDEN merely displays plots for user specified orders.

The routine KRDEN merely generates the input parameters for the

IMSL routine NDKER which is documented in the IMSL Library, Volume 2

(1980). Various values of H-h(n) may be employed to obtain different

shapes for the estimated density. The kernel employed is the normal

kernel programmed in the function subprogram XNKER.

The routines MIDEN and CMPDEN are the most complicated routines

in that a variety of regression subprograms must be employed to

generate the parameters of interest. MIDEN uses a subprogram called

LEGP to generate the matrix COF of Legendre polynomial coefficients.

CMPDEN has the advantage shared by KTOEN and TKDEN of employing the

orthogonai functions directly in the algorithm. The difference

between these techniques and the above orthogonal expansion techniques

I is that a covariance matrix COV (PHI in CMPOEN) must be computed and

supplied to a least squares algorithm to obtain least squares

parameter estimates for the truncated orthogonal expansion. A SWEEP

operator is employed in the sequential regression routine SEQREG to

obtain the coefficients in MIDEN, while a complex SWEEP operator is

used in CSQREG for CMPDEN. The SWEEP operator has many computational

advantages. Kennedy and Gentle (1980) discuss some of its properties.I L

Both MIDEN and CMPDEN use the logarithm of an initial density

estimate from NNDEN to serve as a dependent variable in the regression

framework. A value of 8 is used to m(n) as a default, but was

modified for some of the runs described in Chapter 6. For comparison

purposes, a version of CMPOEN was written that used NDKER in place of

I. I
NNDEN to obtain initial estimates, and while results were excellent

.".l
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for the special case considered, some reasons will be given in Chapter

6 why this practice is not recommended. Note that the maximum order

of expansion is set at 10 for both procedures and that orthoginality

with respect to the initial estimate has not been induced. This means j
that addition of terms in the expansion will change all of the

previously computed coefficients. Consequently, one may wish to I
modify this procedure accordingly, but one will note in the next j
chapter that non-orthogonality does not pose a serious problem.

In programming the complex regression technique for CMPDEN,

several early failures emphasize the importance of taking care when

dealing with complex values. Although the final density estimate will 1

be real if one employs conjugate pairs in the expansion, the erroneous 1
deletion of the imaginary part of the estimated coefficients

invalidates the obtained estimate. One should avoid the suppression

of imaginary terms to obtain real valued estimates until the procedure

has been thoroughly tested. Examinations of the results of Chapter 6 1
reveal that the technique for obtaining estimates in both TKDEN and

CMPDEN produces complex valued coefficients. When applied properly in

conjugate pairs, the imaginary terms always vanish. j
The problem of order determination has been considered in both

TKDEN and CAPOEN. As mentioned, the MISE criterion is used to obtain

a "best" order for the expansion in TKDEN. The AIC criterion is

computed in CMPDEN to diagnose a best order, but in practice this

criterion does not seem to perform as well as the MISE criterion.

A parametric version of MIDEN called NPDEN was created

specifically to handle least squares estimation of the parameters in II
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the canonical exponential model representation of gamma and normal

densities. The independent variables are log x, x, and x3 in the

expansion and the coefficients are computed by inserting the

appropriate variables into the regression model.

The utility of the minimum information regression approach is

illustrated by the two step FORTRAN-SAS program listed in Appendix

A.3. A FORTRAN PROGRAM uses LEGP to generate independent variables

and NNDEN to generate the dependent variable to be used in the SAS

procedure GLM. Predicted values are written into a data set called

TWO, and in a DATA step the exponent of the predicted values is

obtained and submitted to the procedure PLOT where the estimated

density is then plotted against the original X value. This two step

procedure exemplifies the ease in adapting the minimum information

regression approach to existing regression software. More difficulty

may be encountered in the use of complex exponentials because complex

regression routines are not to be found in the major statistical

packages.

Appendix C contains some useful subprograms accessed by the above

routines. Appendix 0 contains several of the plotting subprograms

gemployed to obtain printer plots of the estimated densities. PLOTXY

generates 45 equally spaced X values and generates the corresponding Y

values by linear interpolation. Then a plot of Y as a function of X

is produced with the values of X and Y printed for each plotted point.

Corresponding to this routine is PLTXYZ which produces an overlay plot

i of Y and Z as functions of X. The routine PPLOT produces a more

appealing plot but presents only a scale of X and Y values. PPLOT is

I
I
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recommended for scatter plots as it does not induce linearity by I
interpolating values as does PLOTXY. For more elaborate plotting

using the Versatec plotting software, the subprogram GPLOT of the

TIMESBOARD Library (Newton, 1979) is a flexible multiple purpose

routine for obtaining high resolution plots. SAS/GRAPH (1981) also

contains many useful plotting procedures. A version of NPDEN accesses I
GPLOT to obtain plots on the Versatec Electrostatic Plotter. Some of

the three dimensional plotting procedures of SAS/GRAPH will be

mentioned in the next section. j

5.4 The BISAM Bivariate Data Modeling Program j

The program BISAM is a general purpose bivariate data modeling I
program designed to provide a variety of univariate and bivariate I
descriptive statistics and graphical output. The core of BISAM is the

routine CMPINF (CoMPlex regression using INFormation functionals)

which serves as a generalization to CMPDEN for the bivariate case.

Within CMPINF the rank transformed data is exposed to a bivariate 1
version of NNDEN with computations proceeding as in CMPDEN. A modular

arithmetic scheme is devised to imbed the two-dimensional subscripting

of coefficients into a one dimensional indexing scheme. A-maximum

order of 7 is specified and a 49 by 49 covariance matrix (omitting the

constant term) is then supplied to CSQREG described above. Currently, I
orders 8, 24., and 48 are automatically supplied with the user having

the option to override these values with user-supplied even orders (to

insure that the estimated dependence density is real). A listing of

I
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I
the main body of BISAM along with the major subprograms employed may

I be found in Appendix B. The minor and peripheral subprograms employed

may be found in appendices C and D.

The main calling program of BISAM reads the bivariate data set

with the variables read in one at a time as univariate data sets. The

first card of a data set should contain a descriptive title describing

I the data set. The second card should contain the number of data

points N and the format of the input variables. The format that reads

the second card is given by (15,4X,5A4). Coded in the appropriate

format, the N data points should then follow. When BISAM finishes

reading the two data sets, it immediately checks to see if the two

3 sample sizes agree. If they do not, the program terminates. Before

reading the two data sets, however, the user must specify several

options to be employed in the analysis. Hence, the first data card

1 will be an option card with the following input options in (915)

format:

I
NTAPE - tape where data set residesI
M MORD - maximum autoregressive order to be used for

univariate density estimation (6)

IDQXIDQY null distributions for autoregressive smoothing:

I - Normal 4 - Double Exponential

2 - Exponential 5 - Uniform reciprocal

3 - Logistic 6 - Cauchy
I

I1
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A value of 1 is recommended. For a more complete

listing and description, see Parzen and Anderson

(1980).

IPLTl Scatter plot options:

0 - no scatter plots I
I = scatter plot of data 1
2 - scatter plot of rank transformed data

3 - both scatter plots j

IPLT2 Univariate density plotting options: I
0 - no quantile box plots

I - produce quantile box plots I
IDST - Univariate descriptive statistics:

0 - no descriptive statistics displayed I
1 - descriptive statistics computed and displayed

for each variable !
KDEL Maximum number of extreme points to exclude from

analysis.

Extreme points are determined by distance from the

median, and if X and Y extreme points correspond,

they count as two points although only one will be

excluded from the analysis. Hence, KDEL usually

exceeds the actual number of points so deleted.

I!

" ' o _ . o . . . . . . ... . . . ... . . ..
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These options illustrate the variety of output available 
from

BISAA. The univariate descriptive statistics, plots, and

autoregressive density estimates are obtained by employing some

modified routines from ONESAM (Parzen and Anderson, 1980). The

routine PPLOT describei in the last section is used to obtain the

scatter plots, while PLOTXY is used to plot the univariate

density-quantile functions.

Before calling CAPINF, several routines are accessed that provide

some of the standard correlation statistics discussed in section 6.3.

CMPINF then uses the various estimates of the dependence density to

obtain entropy measures of association. These are displayed along

with the standard correlation statistics at the end of the output.

Intrmediate output consists of univariate descriptive statistics and

plots (if requested) and coefficients for the expansion of the

logarithm of the dependence density. An integrating factor is also

displayed providing a diagnostic as to the legitimacy of the estimated

dependence density. Sample output from BISA will be presented in the

next chapter.

The current version of BISAM writes the values of an estimated

dependence density and bivariate density-quantile function to a

temporary disc file to be accessed by a SAS/GRAPH procedure. PROC G3D

and PROC GCONTOUR are then employed to produce three dimensional plots

and contour plots of the appropriate function. Output from these

procedures appear in the next chapter. The FORTRAN routine CPLOT

written by Phil Spector provides a contour printer plot. Output from

this routine appears following the parameter estimates for each order

Now
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of approximation. The use of CPLOT has currently been suppressed I
because of the availability of SAS/GRAPH.

5.5 A Note on Computer Facilities j

The programs mentioned were developed and run on an Amdahl 470

V/6 or Amdahl 470 V/78 operated by the Data Processing Center at Texas

A and M University. The operating system employed is MVS/JES3

allowing the joint operation of both Amdahls as a single system. The J
WYLBUR text manipulation system was used to type, edit, and run the

programs from a CRT terminal. .
The program BISAM is executed using a one step system procedure

FORTX that compiles, loads, and executes a FORTRAN program. Since

BISAM has been in the developmental stage, a compiled version has not j
been created so run times reflect the more inefficient procedure

employed. A typical run of BISAM for a bivariate data set of size 100 1
requesting all output will use about 50 CPU seconds and will entail

the reading of 2398 card images. Naturally, different data sets of

the same size may have vastly different characteristics (such as the

number of tied observations, correlation, etc.) so that the above

represents only an approximation. Furthermore, the above results are I
by no means typical for all computers and are stated here only as a

rough guide. U
I
I
I
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6. EXAMPLES AND APPLICATIONS

6.1 Introduction

Testing a new statistical technique entails two stages of

verification:

1) Check the techniques using data from known parent distributions.

2) Expose the techniques to "real data" and compare and contrast the

results to those obtained using other techniques.

Poor results at stage (1) should cause one to discard a trial

I |methodology without bothering to continue to stage (2), although valid

Iexceptions to this practice may occur. Often poor results from the

first stage suggest modifications to improve a procedure so that it

need not be completely discarded. The second stage should be

emphasized, however, as it simulates an environment in which a

technique will actually be used. One need not confirm the analysis of

others. In fact, if the new technique is more sensitive than existing

ones, it may suggest additional interpretations of experimental

results that are more appealing than those previously obtained. In

the area of data analysis, one is especially interested in obtaining

I as much insight as possible about the nature of a data set. Hence, a

technique offering extended diagnostics is especially welcome. One

must be careful, however, to avoid being overwhelmed by an abundance
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of diagnostics that may be performing similar tasks. Each

statistician must choose those techniques which he feels are best

suited for data analysis, and if additional procedures are warranted,

they may be applied as needed. For example, if a statistician prefers J
to use two density estimation techniques to get an idea of the

distribution of a data set, and both techniques give conflicting j
results, a third technique may be employed in an attempt to verify or

contradict the results already obtained. Consequently, one may prefer

to withhold sophisticated and expensive procedures unless the easier, ]
less expensive methods fail to adequately deal with the problem at

hand. Many statisticians are content to use a histogram to diagnose I
symmetry when the inference tool to be employed is fairly robust to

slight deviations from symmetry, but rarely would a histogram be I
adequate to confirm rigid distributional requirements. 1

In this chapter, some of the procedures developed in previous

chapters will be exposed to simulated and real data sets. At stage 1

one, techniques with subjective smoothing requirements are often

easily made to conform to the simulated shape or value. It is at i
stage two that the weaknesses of the subjective factors involved are I
exposed. Interpretations will be offered for conflicting results. I

6.2 Univariate Examples I.
To examine the univariate density technique of Chapter 3, we

consider three data sets. These are given by

I
~I

I
l | | " -". -
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A) 100 Gamma(1O,1) r.v.'s

$B) 50 N(O,1) r.v.'s mixed with 50 N(3,.25) r.v.'s

C) 63 observations on snowfall in Buffalo, New York,

from 1910 to 1972.

Listings of these data sets may be found in Tables 5 through 7.I
I

Table 5. 100 Observations from a Gamma(1O,1) DistributionI
4.24783 7.13944 8.54367 10.02394 12.09786
5.04321 7.15666 8.61258 10.08187 12.12808
5.24307 7.21348 8.62224 10.31604 12.30663
5.42475 7.27734 8.63897 10.42786 12.41536
5.44763 7.32370 8.77373 10.54578 12.53470

I 5.53802 7.39561 8.87619 10.56661 12.81958
I 5.59490 7.47524 8.90276 10.57409 12.88938

5.67504 7.50638 9.06354 10.67747 12.96910
6.13585 7.54331 9.09246 10.90295 13.02124
6.20833 7.83998 9.23594 10.90404 13.75874
6.21723 7.84698 9.25439 11.00485 13.87460

6.37002 7.94389 9.37018 11.13315 13.95213
1 6.38983 8.03307 9.38267 11.13889 14.08677
V 6.46811 8.03327 9.49000 11.28637 14.19301

6.50198 8.10931 9.51031 11.31890 14.19326
6.52324 8.12584 9.57556 11.38006 15.87417
6.57701 8.19711 9.63029 11.47916 16.10650
6.61291 8.31321 9.81822 11.61629 18.13609
6.75889 8.39989 9.89115 11.69777 18.79675

7.01929 8.40721 9.96447 12.02569 19.88026

I

I Tables 8 through 10 give selected output from the SAS procedure

UNIVARIATE for the data sets. Also, to illustrate the utility of the

parametric application of minimum information density estimation, we

I
!
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I

Table 6. Sample from the Normal mixture .5 N(O,1) + .5 N(3,.25)

-2.46836 -0.07938 0.93945 2.58292 3.07817
-1.76497 -0.07224 1.04555 2.61084 3.08599
-1.54261 -0.03350 1.15230 2.65899 3.08894
-1.39970 -0.01924 1.15795 2.66611 3.18530

-1.18157 0.02757 1.27020 2.66671 3.19295 J
-0.92799 0.03663 1.32825 2.69727 3.21383
-0.78408 0.05647 1.35215 2.71167 3.22806

-0.78233 0.08547 1.51836 2.73020 3.23082
-0.72175 0.09712 1.86996 2.76127 3.27329
-0.71528 0.40045 1.91409 2.83441 3.28711
-0.69271 0.54350 1.99246 2.83984 3.34942
-0.63495 0.57335 2.01725 2.84271 3.43836
-0.62522 0.57826 2.17318 2.84482 3.49594
-0.58790 0.64629 2.17619 2.86786 3.49905
-0.42311 0.68756 2.25658 2.92654 3.52823 I
-o.419o8 0.70090 2.28519 2.95894 3.68402
-0.39825 0.79734 2.39207 3.02427 3.70910
-0.22372 0.82677 2.42322 3.03565 3.74198 I
-0.19536 0.83868 2.43118 3.05925 4.02736
=0.18169 0.90461 2.47505 3.07473 4.17188

I

will consider a set of 100 simulated N(0,1) random variables and

compare the least squares estimates to the usual maximum likelihood or

UMVU estimates of the parameters. The normal data set is not exposed 5
to the other procedures because they all seem to perform well for

smooth, symmetric densities. Data sets A and B will seek to test the i
techniques for sensitivity to skewness or bimodality, while data set C

is included because it has been analyzed in a variety of density I
estimation references (see, e.g., Parzen, 1979, or Tapia and Thompson,

1978).

The popularity of the histogram and the fact that the bin width 3.
IL
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Table 7. Yearly Snowfall in Buffalo, New York, 1910-1972

25.0 58.0 77.8 85.5 104.5
39.8 60.3 78.1 87.4 105.2
39.9 63.6 78.4 88.7 1)0.0
40.1 65.4 79.0 89.6 110.5
46.7 66.1 79.3 89.8 110.5
49.1 69.3 79.6 89.9 113.7
49.6 70.9 80.7 90.9 114.5
51.1 71.4 82.4 97.0 115.6
51.6 71.5 82.4 98.3 120.5
53.5 71.8 83.0 101.4 120.7
54.7 72.9 83.6 102.4 124.7
55.5 74.4 83.6 103.9 126.4
58.0 77.8 85.5

problem is well documented make its analysis here unnecessary. For

illustrative purposes, we include Figure 6 showing the output of PROC

CHART of SAS for the Buffalo snowfall data.

Using the FORTRAN routines documented in the last Chapter, we

obtain density estimates to be labeled as follows:

FNN - Nearest Neighbor density estimate

FKR - Kernel estimate

FKT - Kronmal-Tartar trigonometric series estimate

FTK - Tartar-Kronmal complex Fourier series estimate

FMI - minimum information estimate using Legendre

[-1,1] polynomials

FMC - minimum information estimate using complex

Fourier series

. ... Jl_ I
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j

Table 8. Selected Output from SAS PROC UNIVARIATE j
for Data Set A

MOMENTS

N 100 SUM WGTS 100
MEAN 9.64664 SUM 964.664
STD DEV 3.06639 VARIANCE 9.40273

SKEWNESS 0.904072 KURTOSIS 1.05021
USS 10236.6 CSS 930.871 I
CV 31.7871 STD MEAN 0.306639
T:MEAN-O 31.4593 PROB>ITI 0.0001

QUANTILES ]

100% MAX 19.8802 99% 19.8694

75% Q3 11.3648 95% 15.7901
25% QI 7.34168 10% 6.20922
0% MIN 4.24783 5% 5.45215

RANGE 15.6324 1% 4.25578

Q2-Ql 4.0231
MODE 4.24783 J

I

FTK will only be applied to data set C to illustrate the MISE order j
determining criterion. Examples of the application of autoregressive

density estimation to Buffalo snowfall may be found in Parzen (1979b)

along with other examples, and hence will not be included here. Tapia 3
and Thompson (1978) also give a variety of examples for various

ensity estimation routines. Tartar and Kronmal (1976) illustrate the j
use of FTK applied to relatively smooth data sets. We include the

above estimates for comparison and illustrative purposes. i
For data set A, Figures 7 through 11 contain the "best" estimates 3

obtained from a procedure overlayed with the true population density

I
U
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Table 9. Selected Output from SAS PROC UNIVARIATE
for Data Set B

MOMENTS

N 100 SUM WGTS 100
MEAN 1.52001 SUM 152.001
STD DEV 1.62488 VARIANCE 2.64023
SKEWNESS -0.359466 KURTOSIS -1.07955
USS 492.427 CSS 261.383
CV 106.899 STD MEAN 0.162488
T:MEAN-0 9.35463 PROB>ITI 0.0001

g QUANTILES

100% MAX 4.17188 99% 4.17043
75% Q3 2.95084 95% 3.67623
50% MED 1.95327 90% 3.34319
25% QI 0.029835 10% -0.713023
0% MIN -2.46836 5% -1.168893 1% -2.46133

RANGE 
6.64024

Q3-Q1 2.921
i MODE -2.46836

I
i used to generate the data. One notes that FNN has difficulty

smoothing out the mode of the density, but the value at the mode is

0.14 which is close to the true value 0.13. The densities FKR, FMI,

and FMC all perform an adequate approximation to the parent

i gamma(lO,l) density. Coefficients for FKT for the three data sets are

displayed in Table 11. Table 12 contains the coefficients for FMI,

and Table 13 contains coefficients for FMC.

For data set B, some of the techniques have a little more

difficulty approximating the bimodal parent density. Figures 12

I



160 1

j

Table 10. Selected Output from SAS PROC UNIVARIATE I
for Data Set C

MOMENTS

N 63 SUM WGTS 63
MEAN 80.2952 SUM 5058.6 J

STO DEV 23.7198 VARIANCE 562.629
SKEWNESS -0.0186313 KURTOSIS -0.562101
USS 441065 CSS 34883 J
CV 29.5407 STD MEAN 2.98842
T:MEAN-O 26.8688 PROB>lTI 0.0001

QUANTILES

100% MAX 126.4 99% 126.4
75% Q3 98.3 95% 120.66 I
50 MED 79.6 90g% 114.18
25% Q1 63.6 10% 49.3
0% MIN 25 5% 39.94

1% 25
RANGE 101.4

Q3-Q) 34.7 I
MODE 82.4

I
through 17 contain plots for this data set. FNN once again seems to

fluctuate randomly about the modes but gives a good rough

approximation to the bimodal shape. FKR, FMI, and FMC once again seem

to provide the best results with some problem in estimating the true I '
value of the parent density at the modes, but diagnosing the bimodal

shape well. Figure 17 shows the exceptional ability when presented

with an above average initial density estimate in CMPDEN instead of 3
FNN, and the resulting value of FMC is extremely close to the true

values of the parent density. The only discrepancies occur in the I

I
-. ____ _
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I Figure 6. Histogram of Buffalo Snowfall Data
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Figure 7. Nearest Neighbor Density Estimate for Gamma(lO, l) Oata,
kml5]

I
tail areas which is typical for the orthogonal expansion techniques. 3

For data set C, Figures 18 through 23 represent the different

shapes one may subjectively obtain from a density estimation 3
procedure. FNN seems to indicate a trimodal parent density. FKR

depicts a unimodal shape. FTK is included in this analysis with I

coefficients listed in Table 14. For FKT and FTK, functionals of the I

estilmated p.d.f, were included to compare to the usual unbiased

I

!I
___. . ..________.____'__________.___________________
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unimodal shape is obtained with mean and variance "close" to their 3
unbiased counterparts. An order 7 approximation for FKT is displayed

to illustrate a trimodai shape, although a unimoda1 shape is obtained I.
for orders 1 through 4. Again, the mean and variance estimates are

similar to their unbiased counterparts.

FMI and FMC tend to provide different shapes, and as exemplified 3
above, the complex expansion tends to introduce multimodal estimates

HF
I
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3 at lower orders than the polynomial expansions. The order 6 estimate

for FMI depicts the transition from a unimodal to a trimodal shape.

The order 6 estimate for FMC already clearly indicates a trimodal

shape.

One might note that for the two objective criteria MISE and CAT,

I a unimodal shape for Buffalo snowfall is indicated, although most

procedures will admit trimodal shapes. (See Parzen, 1979, for

- -

' -I I i I . ... + 0



.1
166

j
I

0 *- '40 3- '40
4 2949 3 33'0 0000

.3I. 0 40 0 33,' 0

4211 0.0123 003 2

$0.7'I 3.3742 0.34I0 3

1 '42 0 019 1 0.014
4441 0.,o 0.0 0 0 4.144 0.'1 24 0.901$

, 3 0.204 0. , 3
?.4131 0 407 0..142 .

'.2 0<9 0' 2

4.432+ 0.<71' 3.'<344

7.I ,0 1 .3 03 0 .25 a "31.0I$2 0.<271 0: 1 2'4

91111 0. 13. 0 -4 1 . * 1

.42? .7 0. : J
O4 1 26 a 3 41 6.Z ?

'0.2., 0.°o4 0.s,7,.3
,.14 0940 0.1'2 * 0* .9701 0.0 044 * 0

1 '1 2 .0704 02701
'2.442l O0042 40 ? * 2 0
'2.41 3 .0440' 0 073w * 2
3. .4| 0.0940 0.004

53 414 0.0407 2O292 * 24.0343 2 .4294 3.344 *

. ...4 0 0331 0.042 . 0
4 7244 0 3244 0.334 * C

...... ..... . ... .. * 0 .
.049 0. ? 3 3~4 0.33 ~ .- 0 4 4il

+  

4.0337 *

Figur 11. Miiu Inorato Seie Estimat usn Cope

4I.4410 3.349l 00 1 . .

''l 213 0 4414 0.0'4 ii0

'34 0+ .040 0.0'37*1

.. .44 0.0440 2 3079

t.0n37 f.0or1 0 Data 2-6
t he I' 4 o2 d .ap44 c,1.2414 0 4'44 0.4940 0

•9 9494 *0422 4m4027 30 *

'4 494' 402071 0.402' :0

I.O~lI

Figure 1. s inimum Information Series Estimate using Complex
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I
illustration of CAT results). When the true p.d.f. is known, as isI

the case for data sets A and 8, a procedure can usually be steered to

produce a desired shape. Consequently, a better test for a procedure 3
would be for stability or objectivity. The estimate FNN is fairly

stable for orders of 5 or more in terms of representing a fixed number I

of modes although fluctuations in mode estimates occur. The

orthogonal expansion techniques tend to be unstbale, especially for

34|

• i , I l I 1
f

L . t... . . .. r +: . ..
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Table 11. Trigonometric Series Coefficients

DATA SET A: I COF DATA SET B: I COF
1 0.0530 1 -0.0752
2 -0.0234 2 -0.0235
3 -0.0317 3 -0.0289
4 -0.0111 4 -0.0595
5 -0.0123 5 0.0779
6 -0.0068 6 -0.0456
7 -0.0044 7 0.0393
8 -0.0027 8 0.0123
9 -0.0021 9 -0.0222

10 -0.0015 10 -0.0071

DATA SET C: I COF
1 -0.0021
2 -0.0057
3 -0.0002
4 0.0014
5 -0.0023
6 -0.0021
7 0.0032
8 0.0014
9 -0.0013

10 0.0006

I

large orders of approximation, but objective use of criterion

functions helps to overcome this problem. The fISE criterion of

Tartar and Kronmal (1970,1976) does not translate effectively to the

minimum information procedure, but one suspects a modification of

MISE, CAT, or AIC should better handle the problem. Further research

is warranted in this area. Consequently, we do not advocate as yet

3 the use of minimum information techniques over autoregressive

estimation with the CAT criterion or estimation using FTK with theII
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Table 12. Coefficients for FMI Density Estimate

I
Data Set A: Order Coef Data Set B: Order Coef

1 -1.411 1 0.658
2 -0.990 2 -0.986
3 0.749 3 0.228

4 -0.746
Data Set C: 1 0.237 5 -0.977

2 -0.951 6 0.267
3 0.012 7 0.552
4 0.164 8 0.392
5 0.082
6 -0.227 I

I
MISE criterion. However, in the bivariate case, the minimum

information approach is easily extended and seems more appropriate

than existing procedures, especially in terms of controlling the I
amount of graphical displays necessary to arrive at an acceptable

estimate.

To illustrate the parametric application of the minimum

information approach to estimating parameters for normal and gamma

models, data set A is examined along with data set D consisting of a

random sample of 100 N(OI) values. A parametric model for data set A g
appears in Figure 24. Note the least squares estimates are a-8.94 and

b-0.94 which correspond to an estimated gamma mean of 9.51 and an

estimated gamma variance of 10.12. Data set D is listed in Table 16

with selected descriptive statistics from PROC UNIVARIATE of SAS I
U
I
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I
Table 13. Coefficients for FMC Density Estimate

DATA SET A: IND REAL(THETA) IMAG(THETA)
-1 -0.316603 0.596658
1 -0.316603 -0.596659

-2 -0.070131 0.161096
2 -0.070130 -0.161097
-3 -0.056627 0.069507

3 -0.056627 -C.069507I
DATA SET B: IND REAL(THETA) IMAG(THETA)

--1 -0-.175565 -0-.197545
1 -0.175564 0.197546

-2 -0.204320 -0.293631
2 -0.204320 0.293632

-3 -0.114078 -0.043741

3 -0.114078 0.043741I
DATA SET C: IND REAL (THETA) IMAG(THETA)

-1 -0.351673 -0.079655
1 -0.351673 0.079656

-2 -0.065335 -0.074402
2 -0.065334 0.074402

-3 -0.117258 -086600
3 -0.117258 0.186600

I

'1 appearing in Table 17. Figure 25 shows the parametric representation

of the normal density with a least squares estimated mean of -0.10 and

variance of 1.25. These examples illustrate the parametric

applications of the minimum information procedures, suggesting

possible extensions to goodness-of-fit diagnostics.

I
I.
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Figure 12. Nearest Neighbor Density Estimate for

Normal Mixture Data, k-15

I

A few comments are in order. Examination of the expansion

coefficients reveals a rather rapid decay, as expected, but higher

order coefficients usually remain large enough to induce a very wiggly I
shape to the estimated density. Furthermore, expansions using complex ]

exponentials seem to require fewer terms than the polynomial or

trigonometric series expansions. This indicates that complex Fourier

series may converge more rapidly than other series expansions, a

i1

• i I I. +|
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Figure 13. Kernel Density Estimate for Normal Mixture Data, h-1.0

conjecture that seems to be supported by the literature. This

motivated using only complex expansions in the bivariate case,

although one may wish to consider other choices for the orthogonal

system of functions to use.

In this section we have presented several examples of

nonparametric density estimation procedures. Essentially, we have let

the plots speak for themselves to illustrate obtainable shapes and the

3 1 0 2 05 6 3 01•



172

J

.. ...... ....... . .. ......... ... .
-l IO *.- S 00 oe$ ', •

.0 a333 0.4

i. s33 0.0 .1300 a' "

" 38030 0,0:12 0.0302 a 0

"1.7300 0.0Is 0.0441
2- 03 0.03 3 1.0070 * 0
3 :.4 23 0.0 39:2 *

" '!.37 0 40 07 . 7' i

-1.503 0.0072 0.40 *
0.1 0.1 40 0.1310
-0.0071 0.l000 0. '003 0 i
*4.10 2.0,20 0.' 74 '3

-1.4012 0. 1S3 0 :00

-0.. .. .. .1. . .. . . . . .. .. ..
0.0403 ittl40 0.1 3 l | .

Figure * 1 . Trionmeri SeisDniyEtmt0o

0.c n77 0. that . 1ce Te e

0.0304 0.7:2! 0.1030

0.b770 exeio 0.14H4 C p
3.0301 0 100l 0.t304 0 I
.,003 +01003 0.0603 3
.1150+ 0.501 0.0003 0
5332 0.010 1 .00102 3

1.6100 0.0031 0.0030 , *

'.020 0.3070 0.0700 0 •it
3.l630 0.7021 0.40 3

outer 0.W01 0 4, o m

2.xeni 0.n70 0.3070 N3.40' 0.3041 0.00 *1 ,
3.1300 2273 02 'S
3.124' 0.71 2.37*3 0 1

3.,16 0.3030 0.3033 r •

2.7303 :.13 4.034
3.0710 0.0471 2.2043 *

4.3343 0.0342 0+403 * I
4.l?!l 0.0010. 0009 •

Figure Il. Trigonometric Series Density Estimate for
Normal I'ixture Data, mu'6

I
corresponding anomalies that are produced. The examination of the

univariate IOEN and CMPOEN procedures illustrates the power of the

minimum information approach and justifies the examination of I
bivariate extensions. Had CMIPDEN performed poorly in the univariate

icase, one would have little faith in the ability of its bivariate

!!.xtensicunterpart. With this motivation, one may now examine the bivariateofCP[' 0
I'
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Table 14. Coefficients for FTK Density Estimate

DATA SET C: IND REAL(THETA) IMAG(THETA)
-1 -0.2881 -o.793
1 -0.2881 0.0793
-2 0.0698 -0.0014
2 0.0698 0.0014
-3 -0.1041 -0.1915
3 -0.1041 0.1915
-4 0.0732 0.0980
4 0.0732 -0.0980
-5 0.0318 -0.0290
5 0.0318 0.0290
-6 -0.0218 -0.0974
6 -0.0218 0.09746 -0.218 .097

I
I

]

I
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Table 15. Selected Functionals of Estimated Densities

Estimate Mean Variance ISP. MSE Max. Dev.

Data Set A:
True 10.00 10.00 - - -

FNN (k-15) 9.79 10.25 0.0024 0.0002 0.0352
FKT (m-7) 9.65 9.47 0.0019 0.0001 0.0332
FMI (m-3) 9.48 9.01 0.0025 0.0002 0.0185

Param. L.S. 9.51 10.12 0.0015 0.0001 0.0205

Data Set B:
True 1.50 2.88 -
FNN (k-15) 1.49 2.79 0.0055 0.0009 0.0781
FKR (h-0.4) 1.50 2.61 0.0077 0.0016 0.005
FKT (m-6) 1.53 3.28 0.0023 0.0002 0.0343
FMI (m~-8) 1.31 2.79 0.0068 0.0018 0.055--j

Data Set C:IFNN (k-) 78.90 548.77 - - -
FKR (h-5.) 79.92 524.36 - - -

FKT (mn-7) 80.33 548.67 - - -

FTK (rn-1) 73.15 558.96 - - -

FMI (m-6) 76.79 595.74 - - -

FMC (m-6) 79.03 532.64 - - -

IData Set D:
True 0.0 1.0 - - -fParam. L.S. -0.0O 2 1.04 0.0001 0.0000 0.0066

.........
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I
I Table 16. 100 Observations from a Normal(O,1) Distribution

-2.4543 -0.9761 -0.2562 0.2586 0.8609
-1.9855 -0.9257 -0.2454 0.3443 0.9585
-1.9848 -o.8681 -0.2044 0.3506 1.0888
-1.7842 -0.8600 -0.1885 0.3836 1.0903
-1.5225 -0.8447 -0.1862 0.3875 1.1151
-1.4707 -0.8020 -0.1796 0.4137 1.1342
-1.4021 -0.7875 -0.1696 0.4164 1.2297
-1.3537 -0.7511 -0.1534 0.4279 1.2326
-1.3480 -0.7226 -0.1420 0.4341 1.3730
-1.2972 -0.6578 -0.1235 0.4372 1.4012
-1.2791 -0.6520 -0.0955 0.4471 1.4153
-1.2261 -0.5746 -0.0321 0.4938 1.4422
-1.2138 -0.5337 0.0161 0.5047 1.4573
-1.2040 -0.5241 0.0852 0.5215 1.4895
-1.1369 -0.4537 0.1382 o.61o4 1.5830

-1.0814 -0.4434 0.1409 0.6427 1.6441
-1.0793 -0.4220 0.1521 0.6830 1.6826
-1.0661 -0.3949 0.1623 0.7354 1.7450
-1.0071 -0.3725 0.1697 0.7788 1.80241 -0.9990 -0.2596 0.2132 0.7833 2.3243

I
!

'I
I

I

I

II
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Table 17. Selected Output from SAS PROC UNIVARIATE
for Data Set D

MOENTS

N 100 SUM WGTS lOO
MEAN -0.03496 SUm -3.496
STD DEV 0.996355 VARIANCE 0.992724
SKEWNESS 0.0461974 KURTOSIS -0.555495
Uss 98.4019 Css 98.2797
CV -2849.99 STD MEAN 0.0996355
T:MEAN-O -0.350879 PROB>jTj 0.726425 ]

QUANTILES

100% MAX 2.3243 99% 2.31908
75% Q3 0.634625 95% 1.64104
50% MED -0.1095 9o% 1.41389
25% QI -0.834025 10% -1.29539
o% MIN -2.4543 5% -1.51991

1% -2.44961
RANGE 4.7786
Q3-Ql 1.46865
MODE -2.4543

I

I
I
I

Ii
UI
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6.3 Bivariate Examples A

To illustrate the use of the BISAM program that implements the

bivariate data modeling approach detailed in Chapter 4, we consider.1

three data sets. These are J
E) 500 independent N(0,I) bivariate observations, j
F) 100 bivariate standard normal variables with a correlation

of 0.90 ]

G) The coronary data of Scott, et al. (1978). J
Selected output from BISAM for data sets E and F appears in Table 18. 1
List, ngs of the Coronary data appear in Tables 19 and 20, and selected

output from BISAM for this data appears in Tables 21 and 22. ]
For the normal data we shall merely exhibit the results and note

the similarities of the population quantities being estimated.

Figures 26 through 29 display contour and three dimensional plots from

SAS/GRAPH. Scatter plots have been omitted as have the univariate

autoregressive density plots which were normal in all cases. The I

figures illustrate slight anomalies that may occur in the "off

diagonal" areas for a high degree of correlation. These are due in 3
part to the extrapolation problem. Clearly few data points occur in

these tail areas to adequately estimate the bivariate density there.

For the most part, the bivariate estimates of the normal densities are 3
pleasing. One notes that the mode occuring at the point (-0.31,-O.14)

for data set E is a little unusual, but this seems to result from the I

I
~I
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Table 18. Summary of BISAM Output for Data Sets E and F

DATA SET E DATA SET F

X Y X Y
Mean -0.092 -0.085 -0.026 -0.025
Median -0.131 -0.145 0.027 0.060
Trimean -0.109 -0.111 -0.020 0.028
Variance 0.973 0.954 1.120 1.078
St. Dev. 0.987 0.977 1.058 1.038
IQ Range 1.337 1.420 1.378 1.463
Pearson r -0.027 0.893
Spearman Rho -0.038 0.884
Kendall Tau -O.026 0.710
H(d-tilda) -0.292 -0.858
H(d8) -0.056 -0.351
H(d24) -0.077 -0.462I H(d48) -0.104 -2.621

I
I simulation and not the modeling technique. The entropy estimates

exhibit the same type of instability discussed before indicating that

some correction factor should possibly be employed in their

computation. The results for data set E with n-5OO indicate that the

J entropy statistics may be asymptotically biased. Otherwise, the

t results for the normal case are satisfactory, leading one to consider

Investigations with real data.

Scott, et aL. (1978), consider two sets of data consisting of

measurements of plasma cholesterol (CHL) concentration and plasma

Itriglyceride (TRG) concentration in 371 males. The males were

classified into two groups, 320 falling into the category of

"diseased" amd 51 being classified as "normal". These classifications

I i
I1- I 1 _
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Table 19. Listing of Coronary Data - Normal .1

PLASMA CHOLESTEROL - NO CORONARY ARTERY DISEASE I
195. 237. 205. 201. 190. :80. 193. 170. 150. 200. 228. 169. 178.
251., 234. 222. 116. 157. 194. 130. 206. 158. 167. 217. 234. 190.
178. 265. 219. 265. 190. 156. 187. 149. 147. 155. 207. 238. 168.
210. 208. 160. 243. 209. 221. 178. 289. 201. 168. 162. 207.

PLASMA TRIGLYCERIDES - NO CORONARY ARTERY DISEASE 1
348. 174. 158. 171. 85. 82. 210. 90. 167. 154. 119. 86. 166.
211. 143. 284. 87. 134. 121. 64. 99. 87. 177. 114. 116. 132. I
157. 73. 98. 485. 108. 126. 109. 146. 95. 48. 195. 172. 71.
91. 139. 116. 101. 97. 156. 116. 120. 72. 100. 227. 160.

I

were based on medical examination of the patients to ascertain the

presence of coronary artery disease. Using a Kolmogorov-Smirnov

goodness-of-fit test, a null hypothesis of normality is rejected for

all but the diseased class of triglyceride data. This motivated the

use of the kernel method of bivariate density estimation to assist in A
the analysis of the data. A likelihood equation was then developed to

aid in patient classification and to estimate the risk of coronary

artery disease based on CHL and TRG measurements. 3
It was determined that the normal data exhibited a unimodal shape

with mode at (CHL,TRG) - (195,122). The diseased population was felt I.
to exhibit a bimodal th pe with one mode at M1 - (185,122) and the I
second mode at A2 - (233,145). The univariate kernel estimates were

unimodal. Consequently, it was felt that some diseased patients were 3
virtually indistinguishable from normal patients based on CHL and TRG I

I
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Table 20a. Listing of Coronary Data - Diseased

PLASMA CHOLESTEROL - DISEASE IN AT LEAST 1 OF 3 CORONARY ARTERIES

184. 263. 185. 271. 173. 230. 222. 215. 233. 212. 221. 239. 168.
231. 221. 131. 211. 232. 313. 240. 176. 210. 251. 175. 185. 184.
198. 198. 208. 284. 231. 171. 258. 164. 230. 197. 216. 230. 265.
197. 230. 233. 250. 243. 175. ZOO. 240. 185. 213. 180. 208. 386.
236. 230. 188. 200. 212. 193. 230. 169. 181. 189. 180. 297. 232.

150. 239. 178. 142. 323. 168. 197. 417. 172. 240. 191. 217. 208.
220. 191. 119. 171. 179. 208. 180. 254. 191. 176. 283. 253. 220.
268. 248. 245. 171. 239. 196. 247. 219. 159. 200. 233. 232. 189.
237. 319. 171. 194. 244. 236. 260. 254. 250. 196. 298. 306. 175.

251. 255. 285. 184. 228. 171. 229. 195. 214. 221. 204. 276. 165.
211. 264. 245. 227. 197. 196. 193. 211. 185. 157. 224. 209. 223.
278. 251. 140. 197. 172. 174. 192. 221. 283. 178. 185. 181. 191.
185. 206. 210. 226. 219. 215. 228. 245. 186. 242. 201. 23 . 179.
218. 279. 234. 264. 237. 162. 245. 191. 207. 248. 139. 246. 247.
193. 332. 194. 195. 243. 271. 197. 242. 175. 138. 244. 206. 191.
223. 172. 190. 144. 194. 105. 201. 193. 262. 211. 178. 331. 235.
267. 227. 243. 261. 185. 171. 222. 231. 258. 211. 249. 209. 177.
165. 299. 274. 219. 233. 220. 348. 194. 230. 250. 173. 260. 258.
131. 168. 208. 287. 308. 227. 168. 178. 164. 151. 165. 249. 258.

194. 140. 187. 171. 221. 294. 167. 208. 208. 185. 159. 222. 266.
217. 249. 218. 245. 242. 262. 169. 204. 184. 206. 198. 242. 189.
260. 199. 207. 206. 210. 229. 232. 267. 228. 187. 304. 140. 209.
198. 270. 188. 160. 218. 257. 259. 139. 213. 178. 172. 198. 222.
238. 273. 131. 233. 269. 170. 149. 194. 142. 218. 194. 252. 184.

I 203. 239. 232. 225. 280. 185. 163. 216.

I
concentrations, but that a significant number corresponding to

contours in the region of M2 could be classified as diseased. An

interpretation was then given to explain the effect of triglyceride

concentrations in ascertaining the presence of coronary artery

disease. "over and above that implied by the co-existing levels of

plasma cholesterol alone." In their analysis, Scott, at jj., chose to

delete one outlier from each of the TRG data sets based on normality
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Table 20b. Listing of Corona;-/ Data - Diseased .1

PLASMA TRIGLYCERIDES - DISEASE IN AT LEAST 1 OF 3 CORONARY ARTERIES

145. 142. 115. 128. 56. 304. 151. 168. 340. 171. 140. 97. 131.
145. 432. 137. 124. 258. 256. 221. 166. 92. 189. 148. 256. 222.
149. 333. 112. 245. 181. 165. 210. 76. 492. 87. 112. 90. 156.
158. 146. 142. i8. 50. 489. 68. 196. 116. 130. 80. 220. 162.
152. 162. 220. 101. 130. 188. 158. 112. 104. 84. 202. 232. 328.
426. 154. 100. 144. 195. 208. 291. 198. 140. 441. 115. 327. 262.
75. 115. 84. 170. 126. 149. 102. 153. 136. 217. 424. 222. 172.
154. 312. 120. 108. 92. 141. 137. 454. 125. 152. 127. 131. 135.
400. 418. 78. 183. IO8. 148. 144. 170. 161. 130. 143. 408. 153.
117. 271. 930. 255. 142. 120. 242. 137. 223. 268. 150. 199. 121.
91. 259. 446. 146. 265. 103. 170. 122. 120. 59. 124. 82. 80.
152. 152. 164. 101. 106. 117. 101. 179. 199. 109. 168. 119. 233.
130. 133. 217. 72. 267. 325. 130. 257. 273. 85. 297. 137. 126.
123. 317. 135. 269. 88. 91. 166. 90. 316. 142. 173. 87. 91.
290. 250. 116. 363. 112. 89. 347. 179. 246. 91. 17'. 201. 149.
154. 207. 120. 125. 125. 36. 92. 259. 88. 304. 84. 134. 144. I
199. 202. 126. 174. 100. 90. 229. 161. 328. 306. 256. 89. 133.

151. 93. 323. 163. 101. 151. 154. 400. 137. 160. 300. 127. 151.
61. 91. 77. 209. 260. 172. 126. 1OI. 80. 73. 155. 146. 145.
196. 99. 390. 135. 156. 135. 80. 201. 148. 231. 82. 108. 164.
227. 200. 207. 322. 180. 169. 158. 84. 182. 148. 124. 248. 176.
98. 153. 150. 107. 95. 296. 583. 192. 149. 115. 149. 102. 376.
105. 110. 148. 125. 96. 402. 240. 54. 261. 125. 146. 103. 348. I
156. 146. 96. 141. 84. 284. 237. 272. 111. 567. 278. 233. 184.
170. 38. 161. 240. 218. 110. 156. 101.

considerations (number of standard deviations from the mean). The 3
corresponding CHL values then must be eliminated in the bivariate

analysis. I
For this data set (data set H), a BISAM analysis was carried out

for the normal and diseased groups. Scatter plots for these two I
groups appear in Figures 30 and 31, and several density estimates were 3
computed to obtain the shapes depicted in Figures 32 through 36. The I

II
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I

Table 21. Summary of BISAM Output for Coronary Data - Normal

ICoefficients for Bivariate Dependence Density (1 outlier omitted):

tUl NU2 REAL(COF) IMAG(COF)
0 -1 -0.1352 -0.0478
0 1 -0.1352 0.0478
-1 0 -0.1061 0.0630
I o -0.o61 -o.o630

-1 1 0.0315 -0.0563
1 -1 0.0315 0.0563

-1 -1 -0.1071 0.0676
1 1 -0.1071 -0.0676

Integrating Factor - 1.015

CHL Mean 195.14 TRG Mean 140.33
CHL Median 195.14 TRG Median 120.00
CHL Variance 1308.38 TRG Variance 5504.91

CHL AR Order 0 TRG AR Order 2
The following are computed with one outlier omitted:
Pearson r 0.188 H(d-tilda) -0.026

Spearman Rho 0.243 H(d8) -0.099
Kendall Tau-A 0.166 H(d24) -0.116
Kendall Tau-B 0.167 H(d48) -0.681I

I
univariate density-quantile plots appear In Figures 37 through 40.

One rejects normality for both TRG data sets. For this analysis, both

I normal and diseased groups are classified as bimodal with modes for

the normal group at (190,97) and (206,146), and modes for the diseased

group at (187,120) and (221,145). The two modes for the diseased

group support the results of Scott, et al., but the normal results are

contradictory. This analysis was performed for the complete data,

with bimodal TRG densities.

Upon eliminating the outliers suggested above, It was discovered

I
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Table 22. Summary of BISAM Output for Coronary Data - Diseased I
Coefficients for Bivariate Dependence Density (1 outlier omitted):

NUl NU2 REAL(COF) IMAG(COF)
o -i -0.0489 0.0546
o 1 -0.0489 -0.0546
-1 0 -0.0333 0.0221
1 0 -0.0333 -0.0221

-1 1 0.1024 -0.0579 j
1 -1 0.1024 0.0579
-1 -i -0.0148 0.0472
1 1 -0.0148 -0.0472
0 -2 0.0441 -0.0498
0 2 0.0441 0.0498
-2 0 -0.0198 -0.0026
2 0 -0.0198 0.0026
-1 2 o.o831 -0.0029
1 -2 0.0831 0.0029
-2 1 -0.0049 0.0821 I2 -1 -0.0049 -0.0821

-2 -1 -0.0377 -0.0252
2 1 -0.0377 0.0252
-1 -2 -0.0411 -0.0269
1 2 -0.0411 0.0269

-2 2 0.056 O.0286
2 -2 0.0560 0.0118
-2 -2 0.0626 0.0230
2 2 0.0626 -0.0230

Integrating Factor - 1.009

CHL Mean 216.19 TRG Mean 179.35
CHL Median 212.50 TRG Median 150.00 I
CHL Variance 1850.04 TRG Variance 10372.6
CHL AR Order 0 TRG AR Order I
The following are computed with one outlier omitted: I
Pearson r 0.210 14(d-tilda) -0.300
Spearman Rho 0.270 H(d8) -0.078
Kendall Tau-A 0.183 H(d24) -0.105 I
Kendall Tau-B 0.184 H(d48) -0.158

Vi
I

that the results for the diseased group were fairly ttble, but for

... . l--~ l- m , . - .. - -- -- . - - - -- -- .-
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the normal group, a unimodal shape was obtained corresponding to that

of Scott, 11 &1., For this case, a mode for the normal group occurs at .
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(221,11.5). These results seem to confirm those of Scott, et al.,

Elimination of the two outliers served to produce unimodal univariate

densities in all cases. Figures 4.1 through 1.5 illustrate theI
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I

bivariate shapes obtained when one outlier is removed. 3
This analysis illustrates some important points. Bimodal

univariate densities will usually produce multimodal bivariate !

densities, but it is possible for the dependence structure for two

unimodal univariate densities to induce multimodal bivariate

1
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Figure 38. Univariate Density-Quantile Plot for
Variable TRG, Normal

I

I densities. The ability of the kernel method and the minimum

information method to discover these modes is crucial to a study
designed to determine if more than one population is represented by a

I data set. Furthermore, this analysis illustrates the importance of

univariate density estimation in such "bump-hunting" problems. When

I

I
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Figure 39. Univariate Density-Quantile Plot for

Variable CHL, Diseased !

the correlation is small, the univariate densities may dominate the

shaping of the bivariate densities. For the coronary data, the

correlations range from 0.2 to 0.3 indicating small but statistically I
significant correlation between the variables CHL and TRG.

Consequently, the univariate density-quantile functions have a

I
I
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Figure 40. Univariate Density-Quantile Plot for

Variable TRG, Diseased

I

I pronounced effect on the bivariate density-quantile, especially for

the normal group. When the outlier is omitted from the normal group,

the shape of the TRG density changes from bimodal to unimodal with a

corresponding change in the bivariate density-quantile. Clearly a

univariate analysis is crucial to bivariate data modeling, a fact thatI

i
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may I e hidden by the kernel approach.

These examples serve to illustrate the competitiveness of minimum

information bivariate density estimation and point out some

fundamental characteristics of a bivariate data modeling approach.

For any exploratory analysis one is especially concerned with

obtaining all of the possible shapes that can effectively model a data

set. The minimum information approach provides such a multitude of

I shapes with a minimum amount of expurgatorial effort that occurs in

such c.proaches as the kernel method. However, the approach would be

I aided by an objective procedure to choose among the orders of

approximation. This is left as a subject for further study with the

I failures noted herein serving as a catapult for future research.

I
I
I
I
I-

I
I
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I
7. CONCLUSION

7.1 Concluding Remarks

In the dissertation we have shown the utility of the function

approximation approach to density estimation. The representation of

an unknown density as a truncated parametric model that is

nonparametric in its assumptions for the data provides a useful tool

for an exploratory analysis of a data set. The convergence ofI

infinite series representations is usually very rapid so that J
truncated series provide good approximations for functions of

interest. The statistical problem involves estimating the parameters

of the expansion in a stochastic setting. Unfortunately, an exact

stochastic model to aid in estimation is not always available, and I
asymptotic results may only be meaningful for very large samples. J
Consequently, the properties of estimates are difficult to investigate

in such a general setting and hence restrict the applicability of such

approaches to inferential statistics. Simulation studies and

experience in the application of expansion techniques, however, I
support their use in the absence of exact theory. I

Heuristic motivations are given by considering finite exponential

models and their relationship to Fourier series in Hilbert space.

Analogies to classical regression and time series analysis also

provide heuristic support to this approach. The development of I
information functionals then serve to promote the regression analogy

by suggesting least squares estimation of parameters. Information

'II
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theory plays a dual role in providing criterion functionals and

parameters that represent important population characteristics. One

suspects that the observation of Berkson (1980) concerning the

selection of estimation criteria have a more general interpretation in

terms of information functionals. The value of information theory as

aptlied to statistics has yet to be fully realized, but works such as

this one should motivate furthr, research into the area.

I In this work we have presented some fundamental mathematical and

statistical concepts useful to the stuay of bivariate data modeling.

The analysis of a variety of nonparametric density estimation

procedures suggested problems to be overcome and motivated the

Idevelopment of a new technique that competes with existing procedures
gand extends easily to the bivariate case. Classical inference

procedures for testing for independence were explored with suggestions

made for the development of entropy statistics that measure

association between two random variables. An information parameter

m was derived that represented a measure of association, but

satisfactory estimators of the parameter were not obtained. A

bivariate data modeling approach was Investigated and promising

I r~auits obtained for the problem of density estimation and

"bump-hunting" in a multivariate setting. The development of

univariate and bivariate density estimation programs provided

interesting comparisons and permitted the exploratory analysis of a

variety of data sets. The program BISAM permits application of the

data modeling results obtained and provides a useful computing tool to
Ithe applied statistician. The BISA program forms a computing triad

I

i I I
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i

with ONESAM (Parzen and Anderson, 1980) and TWOSAl (Prihoda, 1981)

that may serve as a valuable tool to the data analyst. The

nonparametric and robust procedures availabl. from these programs are

difficult to obtain from one source and overcome the weaknesses of I
most statistical packages in the areas of data analysis and density

estimation. This contribution should motivate the application of

nonparametric procedures to statistical problems and should support j
the continuing research into multivariate nonparametric methods.

7.2 Problems for Further Study I

The entropy estimates of section 4.5 were disappointing in I
comparison with existing measures of association, but it is felt that

better estimates of parameter H(d) will make this an important I
approach in testing for independence. Furthermore, entropy

diagnostics should be valuable tools to many areas of bivariate data

modeling. For example, goodness-of-fit tests are readily suggested by J
examining the information between a null hypothesis density and a

nonparametric density estimate. The utility of information I
functionals spreads across many areas of application. A j
characterization problem might be aided by information functionals,

with an open research question being whether 3

I (fxY; fxfy -(1/2)log(I-p2) (9.2.1) 1
U

Is a defining characteristic of bivarlate normality or whether it

I
I

-. Im L -ll 
I

m 
m
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defines a more general class of distributions. If this equation

characterized bivariate normality, an entropy based test of bivariate

normality could be developed using Pearson's r to estimate the rormal

entropy and using the estimated dependence density to form an entropy

statistic. The difference of these statistics would then be a version

of the information divergence discussed in section 2.5.

The use of subjective criteria in model selection should motivate

f the study of objective techniques for choosing a model over

competitors. One is motivated to consider a function of the sample

I entropy to evaluate the contribution of additional terms in an

expansion. A version of maximum entropy analagous to the AIC or CAT

criterion functions could then be developed to arrive at an optimal

g order of approximation.

The distribution theory for entropy statistics remains to be

investigated, with motivation provided by recent papers by Stute

(1982) and Taniguchi (1980). The asymptotic theory in the univariate

I case for the minimum information density estimate needs to be

resolved, indicating the need for continued research into the

distribution theory of non-standard regression models.

I Multivariate robustness is also a topic of interest, with papers

by Gnanadesikan and Kettenring (1972) and Green (1981) suggesting

I research questions for the problem of trimming a multivariate data set

of outliers. The computer implementation of data trimming procedures

is also of interest.

Finally, one is interested in discovering bivariate distributions

for which the classical nonparametric measures of association performI!!
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poorly. Further research may then be motivated into the numerical

approximation of conditional quantile functions of interest to be used j
in simulation studies. The problem of simulating data corresponding

to existing data as a validity check of an analysis has been

approached from a conditional quantile perspective, implying the need j
for good estimates of the conditional quantile function. Such

estimators have yet to be proposed, but one may approach the problem J
using the function approximation techniques suggested by this work.

F
I
I
I
I

I

I.
I
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APPENDIX A

I
A.) Subprogram MIDEN I

SUBROUTINE MIDEN(X,N,A,B,CAPT,IMOD)

C
C SUBROUTINE TO PERFORM NONPARAMETRIC DENSITY ESTIMATION USING
C LEAST SQUARES REGRESSION MINIMUM INFORMATION TECHNIQUE. I
C LEGENDRE POLYNOMIALS ARE EMPLOYED FOR THE ORTHOGONAL EXPANSION
C
C INPUT: X,N - DATA AND SAMPLE SIZE
C A,B - MIN AND MAX DATA VALUES j
C CAPT - LABEL FOR X
C
C OUTPUT: PLOTS AND DESCRIPTIVE STATISTICS
C
C SUBPROGRAMS CALLED: PLOTXY,FTERP,MAX,MIN,
C SEQREG,LEGP,NNDEN,SWEEPD,RELMINCLPLT1
C

DIMENSION CAPT(20),X(N),Y(150),FNN(150),FMI(150)
DIMENSION CBAR(13),AIC(13) I
DIMENSION THETA(12),P(3,12),COF(12,12),IORD(12),BEST(78,3),

+RVAR (12) ,NVAR (12) ,COFF (11) ,MORD (5) ,XNORD (5)
DOUBLE PRECISION COV(13,13) I
DATA NAIC/H AIC/
DATA NTHT/4HTHET/
DATA NCOF/4H COF/
DATA NAMX/4H X / I
DATA NAMFN/4H FNN/
DATA NAMFM/AH FMI/
DATA NRVR/4HRVAR/ I
DATA IORD/2,3,4,5,6,7,8,9,10,11,12,1/
DATA MORD/2,3,6,11,8/
DATA XNORD/4H-2 ,4H-3 ,4H-6 ,4H-11 ,4H-AIC/
DATA XMN/4HM(N)/
CAPT (13) -XMN
XN-F LOAT (N)
MN- 10
RANGE-B-A
IDEG-O
CALL LEGP(12,P,IDEG)
DO 40 K-11,3

DO 40 J-1,12
COF (K, J) -P (K, J)

10 CONTINUE
DO 50 K-4,12

I
I
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CALL LEGP(12,P,IDEG)
DO 50 J-1,12
COF (K, J) -P(3, J)

50 CONTINUE
DO 240 ITERI-1,2
DO 25 1-1,N
V (I) =x (I)

25 CONTINUE
IF(ITER1.EQ.2) MN-20
CALL NNDEN(X,Y,N,N,IiN,RANGE,FNN)
CALL PLOTXY(Y,FNN,100,CAPT,NAMX,NAMFN,1)
DO 55 1-1,N
FNN (l)-ALOG (FNN (I))

55 CONTINUE
DO 90 K-1,12
CBAR (K)-O.O

Do 8o J-1,K
COV(K,J)-O.O
DO 70 I-1,N
ARGK-COF (K, 1)
ARGJ-COF (J, 1)
IF(K.EQ.1) GO To 61

Do 60 L-2,K
ARGK-ARGK+COF(K,L)*((2.0*(X(I)-A)/RANGE-1.O)**(L-1))
ARGJ-ARGJ+COF(J,L)*((2.0*(X(I)-A)/RANGE-1.0)**(L-1))

60 CONTINUE
61 CONTINUE

IF (J.EQ.1) CBAR(K)-CBAR(K)+ARGK
COV (K,J.) -COy (K,2) +ARGK*ARGJ

70 CONTINUE
IF(J.EQ.1) CBAR(K)-CBAR(K)/XN
COV (K,2) -COV (K,J.) /XN-CBAR (K) *CBAR (.)
IF(K.NE.J) COV(J,K)-COV(KJ)

80 CONTINUE
*90 CONTINUE

CBAR0(3) -0
00120 J-1,12

COV(13,J)-O.O
DO 110 I-1,N

ARGJ-COF (2, 1)
DO 100 L-2,J

ARGJ-ARGJ+COF(J,L)*((2.O*(X(I)-A)/RANGE-1.O)**(L-1))
100 CONTINUE

IF(J.EQ.1) CBAR(13)-CBAR(13)+FNN(I)
a COV(13,J)-COV(13,J)+ARtGJ*FNN (I)

110 CONTINUE
IF(J.EQ.1) CBAR(13)-CBAR(13)/XN
COV(13,J).COV(13,J)/XN-CBAR(J)*CBAR(13)

COV(J, 13) -COV(13,J)
120 CONTINUE

COV(13,13)-O.O0010I-,
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COV(13,13)-COV(13, 13)+FNN(i)*FNN (1)
130 CONTINUE

COV(13, 13)-COV(13, 13)/XN-CBAR(13)*CBAR(13)I
DO 140 I-1,N
FNN (I)-EXP (FNN (I))

140 CONTINUE

CALL SEQREG(COV,13,12,IORO,BEST.78,RVAR,NVAR,NIVN)
CALL CLPLTI(RVAR.NIVN,1,NRVR,41,1)
NV1-NIVN+1
A IC ()--1 .O/XN
AIC (2) -ALOG (RVAR (1))+2.O/XN
DO 150 I-2,NIVN
AIC (1+1)-ALOG (RVAR (W.)2.O*FLOAT(I)/XN

150 CONTINUE
DEC-i ./XN
CALL RELMIN(AICAV1,DEC,MIN1.MIN2,NAIC)
MIN 1-MI N I -1
MIN2-MIN2-l
MORD (5) -MIN I
DO 230 ITER-1,5I
KORD-MORDO(TER)
CAPT (14) -XNORD (ITER)
K-NVAR (KORD)
DO 160 I-AORD
THETA (1)-BEST (K,2)
K-K+1

160 CONTINUEj
CALL CLPLT1 (THETA KORD, 1,NTHT,41, 1)
DO 180 K-2,KORD

COFF (K-1)-0.O I
DO 170 J-2,KORD
COFF (K-1)-COFF (K-1)+COF (J,K)*THETA(J-1)

170 CONTINUE
180 CONTINUE

CALL CLPLTI(COFF,KORD-1,1,NCOF,.1,1)
CALL EQSPY(A,B,100,Y)
F SU-O .0
FMODE-O.
XMODE-999.

FMEAN-0 .0I
FVAR-0 .0
DO 200 WOOD10
PMI0()-0.0

00 190 L-2,KORD

190 CONTINUE

FMI (1) -EXP (FMI (1))I
FSUM-FSUM+FMI (I)
FREAN-FMEAN+Y (I) *FMI (I)
FVAR-FVAR+Y(I)*Y(I)*FMI (I)3
IF(FRiODE.GT.FMI (I)) GO TO 200

FM0DE-FMI (I)
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XMODE-Y (I)
200 CONTINUE

FSUM-FSUM*RANGE/100.0
FMEAN-FMEAN*RANGE/(FSUM*100.0)
FMODE-FMODE/FSUM
FVAR-FVAR*RANGE/(FSUM*100.0)
FVAR=FVAR-FMEAN*FMEAN
DTEST-0.0
00 210 I-I,N
FMI (I)-FMI (I)/FSUM
DTEST-DTEST+ABS(FMI(I)-FNN(I))

210 CONTINUE
DTEST-DTEST/XN
WRITE (6,220) DTEST

220 FORMAT(/,IOX,'AVE OF SUM OF ABS(FMI-FNN)-',F0.4,/)IWRfTE (6,284)
284 FORMAT(1HI,7(/))

WRITE(6,290) FMEAN,FVAR,FMODE,XODE,FSUM
290 FORMAT(///,13X,'+',108(H-),'+',/,13X,'I PARAMETER ',

+'FUNCTIONALS: MEAN -',F0.4,', VARIANCE -',F1O.4,', MODE in,

+FIO.4,' AT X - ',F1O.4,' 1',/,13X,'I INTEGRATING FACTOR ',
+FiO.4,75X,'J',/,13X,'+',108()H-),'+' ,/)
CALL PLOTXY(Y,FMI ,100,CAPT,NAMX,NAMFM, 1)

230 CONTINUE
240 CONTINUE

RETURN
END

I
A.2 Subprogram CMPDENI

SUBROUTINE CMPDEN(WN,CAPT,THETA, INDWNVW, ISORT)

C

C THIS SUBPROGRAM COMPUTES A SMOOTHED DENSITY QUANTILE
C FUNCTION BASED ON ORTHOGONAL EXPANSION IN TERMS OF

C COMPLEX EXPONENTIALS. A NEAREST NEIGHBOR ESTIMATE IS
C OBTAINED AS A RAW DENSITY QUANTILE AND THEN A SEQUENTIAL
C REGRESSION ROUTINE IS APPLIED WITH THE RAW D-Q TREATED

C AS A DEPENDENT VARIABLE. A COMPLEX SWEEP OPERATOR IS THEN
C USED TO OBTA#N COEFFICIENTS AND RESIDUAL VARIANCES FOR
C VARIOUS ORDERS, AND FINALLY PARZEN'S CAT CRITERION IS
C USED TO CHOOSE THE 'BEST' EXPANSION.Ic C

C INPUT: W - RAW DATA
I C N - SAMPLE SIZE

C ISORT - 0 IF W SORTED, I OTHERWISE.
C

C OUTPUT: NVW - ORDER OF EXPANSION CHOSEN (NUMBER OF INDEP. VAR.)

I
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C THETA -COEFFICIENTS IN EXPANSION
C INDW -VECTOR OF INDICES CORRESPONDING TO COEFFICIENTS
C CHOSEN

C SUBROUTINES CALLED: CSQREG,CSWEEP
CJ

DIMENSION W(N),FMC(200),THETA(21),INDW(21),BEST(231,3),
+RVAR(21),NVAR(21),IORDI(21),IORD(21),FNN(200),T(200),FHO(200)
DIMENSION CAPT(20) ,MORD (3) ,CORD (3)
COMPLEX PHI (22,22),PHIBAR(21),ZARG,CEXP,CONJG,CMPLX
DATA IORDI/11,1O,12,9, 13,8,14,7,15,6.16,5,17,4,18,3,19,2,20,1,21/
DATA LVAR, LTHT/4HRVAR, 4HTHET/
DATA NAMX/4H X/
DATA NAMFN,NAMFC/4H FNN,4H FMC/
DATA NAMM/L.H FHO/
DATA MORD/2,8,15/
DATA CORD/4H-2 ,4H-8 ,4H-15/
DATA CMN/4HM(N)/
CAPT (13) -CMNI
DO 1 1-1,21
IORO(I)-IORDI0()
CONTINUEJ
DO 5 I-1,N
T (1) -W (1)

5 CONTINUE
N2-N-2
M-21
Mi-Mel
MID-li
TWOPI-8.O*ATAN0(.0)J
DENOM-l ./FLOAT(N+l)

IF(ISORT.EQ.O) GO TO 10I
CALL GRD(T,N)
CALL ORD(W,N)

10 CONTINUE
A-T (1)-DENOM
S-T (N) +DENOM
RANGE-S-A

C I
C COMPUTE NEAREST NEIGHBOR DENSITY ESTIMATE
C

DO 200 ITERI-1,23
MN-B
IF(ITERl.EQ.2) MN-lD
CAPT (14) -CORD (2)
IF(ITERI.EQ.2) CAPT(14)-CORD(3)I
CALL NNDEN(T,W,N,N,MN,RANGE,FNN)
CALL PLOTXY(T,FNN,N,CAPT,NAMX,NAMFN,1)
FBAR-0.O
DO 4.0 1-n3,N2I
FSAR-FBAR+FNN (I)
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40 CONTINUE
FBAR=FBAR/FLOAT (N-i.)
DO 60 I=1,M
I1I-1-MID
PHiBAR(I)=CMPLX (0. ,.)
DO 50 K-3,N2
ARG-TWOPI*FLOAT(I I)*(T(K)-A)/RANGE
ZARG-CMPLX (0. ,ARG)
PHIBAR(I)-PHIBAR(I)+CEXP(ZARG)

50 CONTINUE
PHIBAR (I)-PHIBAR(I) IFLOAT(N-4)

60 CONTINUE
00 g0 I-Im
DO 80 J-1.1
I I-I-AID
JJ-J-MID
PHI (I,J)-CMPLX(0.,O.)

DO 70 K-3,N2
ARG-TWOPI*(FLOAT(II) -FLOAT(JJ)) *(T(K) -A) /RANGE
ZARG-CMPLX (0. ,ARG)
PHI (I.J)-PHl (I,J)+CEXP(ZARG)

70 CONTINUE
PHI(I.J)-PHI(I.J)/FLOAT(N-i.)-PHIBAR(I)*CONJG(PHIBAR(J))
PHI(J,I)-CONJG(PHI(IJ))

80 CONTINUE
90 CONTINUE

DO 110 I-I.M
i I-I-MID
PHI (Pl,)-CMPLX(O.,O.)I DO 100 K-3,N2
ARG--TWOPI*FLOAT ( )* (T (K) -A)2'RANGE
ZARG-CAPLX (0.,ARG)I PHI (M1,I)-PHI (M1,l)+FNN(K)*CEXP(ZAR G)

100 CONTINUE
PHI (Ml,I)-PHI(A1,I)/FLOAT(N-i.)-FBAR*CONJG(PHIBAR(l))
PHI (I .MJ)CONJC (PHI (11.1))

110 CONTINUE
PHI (Ml,M1)-CMPLX (0.,O.)
DO 120 K-3,N2I ~PHI (M1,M1)-PHI (M1,M1)+FNN (K) *FNN (K)

120 CONTINUE
PHI (Ml.Mi)-PHI (I.MI)/FLOAT(N-4)-FBAR*FBARI CALL CSQREG(PHI,22,M,IORDBEST,231,RVARNVARNIVN)
CALL CLPLT1 (RVAR.NIVNI,LVAR,41.1)
NV1-NIVN+1
DO 190 ITER-1,3
NVW-MORD (I TER)
CAPT (ii) -CORD (ITER)
K1-NVAR (NVW)
DO 140O K-1.NVW
INDW(K)-IFIX(BEST(KI , )90.5)

THETA (K) -LST (K 1,2)
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j
K1-KI+1

140 CONTINUE
WRITE(6,150)

150 FORMAT(1H1)
CALL CLPLT1(THETA,NVW,1,LTHT,4l,1)
FSUM-0.0 j
DO 170 1-1,50
FMC(I)-0.0
T (I) -A+FLOAT (I) *RANGE/50.0
DO 160 K-1,NVW I
ARG=TWOPI*FLOAT(INOW(K)-11)*(T(I)-A)/RANGE
FMC (I) -FMC (I) +THETA (K) *COS (ARG)

160 CONTINUE I
FMC (1) -EXP (FMC (i))
FSUM-FSUM+FMC(I)

170 CONTINUE
FSUM-FSUM*RANGE/50.0
00 180 1-1,50
FMC (I)-FMC ()/FSUM
FHO (I) -.5*XNOR (0., 1. ,T (I))+.5*XNORM(3.,.5,T (I)) I

180 CONTINUE
CALL SEDIAG(FHO,FMC,50,RANGE,XISE,XMAXD,XMSE)
CALL PLTXYZ(T,FMC,FHO,50,CAPT,NAMX,NAMFC,NAMMXISE,XMAXD,XMSE)

190 CONTINUE
200 CONTINUE

RETURN
END

.1
A.3 Two Step FORTRAN-SAS Program Duplicating MIDEN

In the following listing, items appearing in lowercase represent
options depending on the system and the intended application. J

// job card
// optional operating system.cards
//STEP1 EXEC FORTX,REGION-512K <--- one step FORTRAN procedure
//FTOIFOOI DO DSN-WYL.scratch file name 3
//SYSLIB D
// DO/1 DD i
// DO

0 DO name of user subroutine library (TIMESBOARD in this case)
//SOURCE DO * I

C PROGRAM TO PERFORM NONPARAMETRIC DENSITY ESTIMATION USING
C LEAST SQUARES REGRESSION. DATA SET WRITTEN FOR USE BY SAS GLM.

I
L -. _____- U
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C SEE WOODFIELD DISSERTATION FOR MORE INFORMATION.

DIMENSION CAPT(20),L(5),X(150),FNN(150),Y(150)
DIMENSION THETA(12),P(3,12),COF(12,12)

C
C READ DATA SET
C

READ (5,10) CAPT
10 FORMAT(20A4)

READ(5,20) N,L
20 FORMAT(15,4X,5A4)

READ (5,L) (X (I),I-i ,N)

DO 25 1-1,N
Y (1) -X(I)

25 CONTINUEI A-X (1)
B-A
DO 30 1-2,N
IF(X(I).GT.B) B-X(I)
I F(X (1) .LT. A) A-X (1)

30 CONTINUE
A-A-i .0/FLOAT (N)I B-B+l .0/FLOAT (N)
RANGE-B-A
I DEG-OI CALL LEGP(12,P,IDEG)
DO 40 K-1,3

DO 40 J-1,K
COF (K,J) -P (K,J)

40 CONTINUE
DO 50 K-4,12
CALL LEGP(12,PIDEG)I DO 50 J-1,K

COF (K,J) -P (3,J)
*50 CONTINUE
* CALL NNDEN(X,Y,N,N,10,FNN)

DO 70 1-1,N
Do 60 K-2,12I THETA(K)-COF (K, 1)

Do 6o J-2,K
THETA (K) -THETA (K) +COF (K,J) *((2.0* (X (I)-A) /RANGE-I .0) ** (J-1))

a60 CONTINUE
* WRITE(1,65) FNN(I) ,(THETA(K) ,K-2,12)

65 FORMAT(1X,7F10.5,/,1X,5FI0.5)
70 CONTINUE

STOPit END
SUBROUTINE LEGP(N,P, IDEG)

* I code f or subprogram LEGP
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J

SUBROUTINE NNDEN(X,Y,N,M,MN,FNN) I
code for subprogram NNDEN

//SYSIN DO *
data goes here I

//STEP2 EXEC SAS
//ONE DO DSN-WYL. description of tape 1 above where output

of STEP] was written I
DATA TWO; INFILE ONE:
INPUT FNN XI-X6 #2 X7-X11;
Y-LOG(FNN);
CARDS;
PROC GLM;
MODEL Y - variable listing for variables to be included in model/ P;
OUTPUT OUT-NEW PREDICTED-YP; I
DATA THREE; SET NEW;
FHAT-EXP(YP);
PROC PLOT DATA-THREE; PLOT FHAT*X1='*'; J

J

I
I
I
I
I

II
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APPENDIX B

BISAM: A Program for Bivariate Data Analysis

C

C PROGRAM BISAM
C

C

C DRIVER PROGRAM FOR BIVARIATE DATA ANALYSIS
C
C THIS PROGRAM PRODUCES SCATTER PLOTS, DESCRIPTIVE STATISTICS,
C AND CORRELATION STATISTICS FOR A SET OF BIVARIATE DATA.
C BIVARIATE DENSITY ESTIMATION IS PERFORMED ON THE DEPENDENCE
C DENSITY USING MINIMUM BI-INFORMATION TECHNIQUES.
C A 40X40 GRID OF DENSITY AND DENSITY QUANTILE VALUES .S
C WRITTEN TO TAPES 1 THROUGH 3 FOR THE ORDERS 8, 24, AND 48
C TO BE USED FOR GRAPHICAL OUTPUT USING SAS/GRAPH.
C SEE WOODFIELD DISSERTATION FOR MORE INFORMATION.
C
C INPUT: NTAPE - TAPE WHERE DATA SET RESIDES

C (X,Y) - BIVARIATE DATA (INDIVIDUALLY, X FIRST)
C MORO - MAXIMUM AUTOREGRESSIVE ORDER TO BE USED FOR
C UNIVARIATE AR DENSITY ESTIMATION (<-6)
C IDQX,IDQY - NULL DISTRIBUTIONS FOR AUTOREGRESSIVE SMOOTHING
C IPLTI - 0--> NO SCATTER PLOTS
C 1--> SCATTER PLOT OF DATA
C 2--> SCATTER PLOT OF RANK TRANSFORMED DATA
C 3--> BOTH SCATTER PLOTS
C IPLT2 - 0--> NO AUTOREGRESSIVE DENSITY PLOTS

C 1--> BEST ORDER AR DENSITY PLOTS
C IPLT3 - 0--> NO QUANTILE BOX PLOTS
C 1--> QUANTILE BOX PLOTS FOR BOTH X AND Y
C IDST - 0--> NO UNIVARIATE DESCRIPTIVE STATISTICS
C 1--> UNIVARIATE DESCRIPTIVE STATISTICS FOR X AND Y

C KDEL - MAXIMUM NUMBER OF EXTREME POINTS TO EXCLUDE FROM
C BIVARIATE ANALYSIS
C
C SUBPROGRAMS CALLED: DATAIN,RANKORD2,PEARSN,SPRMN,PPLOT,TRIM,
C KENDAL,.MPINF,CPTENT,RELMIN,MIN,PLOTXY,FTERP,
C MINMAXCSQREG,CSWEEP,AUTDEN,ORD,QHLIN,
C QTOFQ,WSPACE,FORIERAUTORG,PARZAREST,

C FQFNC,MDNRIS,QFIND,MAXCLPLT1,DESTATQPLOT,
C EXPAND

I C
C

C

,I
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COMMON X(500) ,Y(500) ,RANKX (500) ,RANKY (500)
DIMENSION L(5),LABY(20),LABX(20),T(500,2),HD(4)

DIM4ENSION CHAR(S) ,XNAME (20) PYNAM4E(20) ,CAPT (20) ,CRNK (6)
DIMENSION W(500) ,SA(lOO3) ,GE (l003)
EQUIVALENCE (T(1,l),X(l))
EQUIVALENCE (T(1,2) ,v(i))
DATA NOUT,NIN/6,5/
DATA CHAR/]H*,lH+,1HX,1H#,1H./
DATA XNAME/1O*1H- I1HX.9*]H /
DATA YNAME/1O*1H- I1HY,9*IH /I
DATA CAPT/4HSCAT,4HTER ,4HPLOT,4H OF ,4HX VS,4H. Y ,14*4H I
DATA CRNK/4H- RA,4HNK T,4HRANS,4HFORM,4HATIO,4HN /I

WRITE (NOUT, 1)
IFORMAT(1HI)
READ(NIN,1O) NTAPE,IDQX,IDQY,MORD,IPLTI,IPLT2,IPLT3,IDST,KDEL

10 FORMAT(915)
WRITE (NOUT,20)

20 FORMAT(//,1OX,20(4H****),/,1OX,'*',78X,'*',/,1ox,'* BISAM '

+'- BIVARIATE DATA ANALYSIS USING FOURIER EXPANSIONS',19X,'*',I
+/,lx,'*AND QUANTILE TECHNIQUES',44X,'*',/,1OX,'*',

+78x, * ,/,1OX,20(4H****))

CALL DATAIN(NTAPE,X,NX,L,LABX)I
CALL DATAIN (NTAPE,Y,NY,L,LABY)
N-NX
IF(NX.EQ.NY) GO TO 40

WRITE (NOUT,30) LABX,LABY
30 FORMAT(1H ,1OX,20A4/,1OX,2OA4.//,IOX,'SAMPLE SIZES NOT EQUAL.',

+' BIVARIATE ANALYSIS INAPROPRIATE. EXECUTION TERMINATED.')
STOP .

40 WRITE(NOUT,50) LABY,LABY,N
50 FORMAT(1H ,9X,20A4/,10X,2OA4,//,1OX,'N-',15)

IF ((IPLIi.EQ. 1) .OR .(IPLTI .EQ.3) )
+CALL PPLOT(X,Y,500,N,1,CHAR,CAPT,XNAM4E,YNAME,O)
WR!TE (NOUT, 1)

C ORDER BIVARIATE DATA BY X VALUESI

C
CALL ORD2 (TN,500)
IF(IDST.EQ.0) GO TO 58
NN 1u2*N+l
DO 51 I-1,N
W (I) -X (I)

51 CONTINUE
CALL DESTAT(W,N,LABX,IPLT3,XMiED,SA,GE,NN1)
DO 52 1-1,N

w (I) -Y (I)
52 CONTINUE

CALL ORD(W,N)
CALL DESTAT(W.N,LABY,IPLT3,YMED,SA,GE,NNI)3

C
C TRIM DATA SET OF AT MOST KOEL EXTREME POINTSI
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C
58 CALL TRIM(X,Y,XMED,Yt4ED,KDEL,N,NEWN)

N-NEWN
C
C OBTAIN RANKS OF X AND Y VALUES
C

CALL RANK(X,N,RANKX)
CALL RANK(Y,N,RANKY)

C

C COMPUTE CORRELATION COEFFICIENTS
C

CALL SPRMN (N,RHO,SUMD)
CALL KENDAL(NTAUA,TAUB,SOMERNC,NDNIND,NDEP,NPAIRS)
CALL PEARSN(N,R)
CALL CMPINF(N,MORD,IDQX,IDQY,IPLT2,HD)

C
C WRITE VALUES OF CORRELATION COEFFICIENTS
C

IF((NIND.EQ.O).AND.(NDEP.EQ.O)) GO TO 59
WRITE(NOUT,55) NIND,NDEP

55 FORMAT(//,IOX,'TIES IN X -',14,', TIES IN Y -',14,//)
59 WRITE(NOUT,50) LABX,LABY,N( WRITE (NOUT,60)
60 FORMAT(IOX,' PEARSON SPEARMAN KENDALL A KENDALL B',

+' SOMER D H(D-TIL) H(D8) H(D24) H(D48)',
+/,IOX,10(H -------- )

WRITE(NOUT,70) R,RHO,TAUA,TAUB,SOER,HD(),HD(),HD(2),HD(3)
70 FORMAT(IOX,9FI0.4)

DO 80 I-1,N
X (I) -RANKX (I)/FLOAT (N+])
Y(I),RANKY(I)/FLOAT(N+ )

80 CONTINUE
DO 90 I-1,6
CAPT(I+6)-CRNK (I)

90 CONTINUE
IF((IPLTI.EQ.2) .OR. (IPLT1.EQ.3))

+CALL PPLOT(X,Y,500,N, ,CHAR,CAPT,XNAME,YNAMEO)
C

STOP
END
SUBROUTINE CMPINF(NMORD,IDQX,IDQYIPLT2,HD)

C SUBROUTINE TO COMPUTE COVARIANCE MATRIX OF COMPLEX

C EXPONENTIAL "SUFFICIENT STATISTICS" TO BE USED IN
C SEQUENTIAL REGRESSION ROUTINE TO OBTAIN "BEST REGRESSION"

C MODELS FOR ORDERS 1 THROUGH M*M. VARIOUS ORDER DETERMINING
C CRITERION ARE COMPUTED AND DISPLAYED VIA SUBROUTINE CPTENT.
C THE BIVARIATE DENSITY QUANTILE IS FORMED BY TAKING THE PRODUCT

C OF THE ESTIMATED DEPENDENCE DENSITY AND THE UNIVARIATE

C AUTOREGRFSSIVE ESTIMATORS.

C

I
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C INPUT: RANKX,RANKY - VECTORS CONTAINING RANKS OF X AND CORANKS
C OF Y
C X,Y - BIVARIATE DATA !
C N - SAMPLE SIZE
C IDQX,IDQY - NULL UNIVARIATE DENSITY INDICATORS
C MORD - MAXIMUM ORDER FOR AR DENSITY EST. PROCEDURE j
C IPLT2 - PLOTTING OPTION FOR UNIVARIATE DENSITY QUANTILES
C
C OUTPUT: PHI - COVARIANCE MATRIX
C FQX,FQY - UNIVARIATE DENSITY QUANTILE FUNCTIONS I
C DQHAT - BIVARIATE DENSITY QUANTILE FUNCTION
C HD - VECTOR OF ENTROPY ESTIMATORS: 1 - ORDER 8
C2 - ORDER 24
C 3 - ORDER 48
C 4 - RAW (FROM D-TILDA)
C
C NOTE: FQX,FQY ARE NOT PASSED BACK TO THE CALLING PROGRAM.
C ALSO, CRITERION FUNCTIONS ARE PLOTTED BUT NOT PASSED
C BACK TO THE CALLING PROGRAM.
C I
C SUBPROGRAMS CALLED: CSQREG,CPTENT,PLOTXY,FTERP,AUTDEN,RELMIN,MIN
C

C
COMMON X (500),Y (500),RANKX (500), RANKY (500)
DIMENSION IND(97) ,RADSQ(500), lORD (49),

+HD (4),DTI L (500) I
DIMENSION MENT(3)
COMPLEX ARGM(13,13),PHI(50,50),CEXP,CONJG,CMPLXZARG
COMPLEX ALPHX (5) ,ALPHY (5) ,COF (97)
DATA IORD/25,24,18,17,26,32,19,31,33,23,11,16,10,30,12,9,

+27,39,20,38,34,40,13,37,41,22.4,15.3,29,5,8,2,36,6,1,28,
+46,21,45,35,47,14,44,42,48,7,43,49/
DATA MENT/8,24,48/
REAL LGDHAT
IF(N.GT.29) GO TO 20
WRITE(6,10) N I10 FORMAT(1OX,'SAMPLE SIZE ',12,' IS TOO SMALL. CMPINF SKIPPED.')

RETURN
C
C SET VALUES OF CONSTANTS
C

20 N2-N-2 3
DO 21 1-1,4

21 HD(i999.0

C FOR THIS VERSION USING COMPLEX SEQUENTIAL REGRESSION THE
C MAXIMUM APPROXIMATING ORDER IS SET AT 7.
C .7 3

L-MOD (M, 2)
ML- (M-L) /2

I I I -" l " . . . P . . . " ' .. .. ..T -
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IFAL.EQ.0) M-M+1
M2-2*M- 1
MMiM*M
Ml -Mm+ 1
MM1-M-1
DENOM-1 .0/FLOAT (N+1)
TWOPi-8.O*ATAN(1.0)

CPI-TWOPI/2.O

C COMPUTE NEAREST NEIGHBOR DENSITY ESTIMATE AND RAW ESTIMATE
C OF ENTROPY

IIO- .
DO 30 1-3,N2
DO 25 J-1,NI ~ ~~~RADSQ (J) -(RANKX (I)-RANKX (J) )**2+ (RANKY (I)-RANKY (J)) **2

25 CONTINUE
DO 26 Km1,5I CALL MIN(RADSQ,N,RMIN,INDR)
RADSQ (I NR)-F LOAT (2*N*N)

26 CONTINUE
VKJ".RMI N*DENOM*DENOM*P II IF (VKJ.EQ.O.O) VKJ=O.5*DENOM*DENOM*PI

C
a C DTIL IS AI.OG(DTIL)

DTI L(I) -ALOG (5.0/ (FLOAT (N+1) *VKJ))
HDO-HOO-DTI LO()

30 CONTINUE
ND401) -HDO/FLOAT (N-'.)

C
C COMPUTE MATRIX OF EXPONENTIAL CROSS-PRODUCTS TO BE USED FORIC COVARIANCE COMPUTATIONS
C

DO 50 IbIl,M2I I11-1-M
DO 50 J,'1,M2
JI-J-M
ARGM(I ,J)-CMPLX(O.OO.O)
DO 40 K-3,N2
ARG-TWOPI*(FLOAT(I 1)*RANKX(K)+FLOAT(J1)*RANKY (K))*DENOM

* ZARG-CMPLX (0., ARG)
if ARGM(I ,J)-ARGM(I ,J)+CEXP(ZARG)

40 CONTINUE
ARGM(I ,J)-ARGM(I ,J)/FLOAT(N-4)

50 CONTINUE
C
C COMPUTE COVARIANCE MATRIX

I 00 60 IN-1,01M
I-IN-i
12-MOD (I M)
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12-1 2+M-ltL
DO 55 JN-1,IN
J-J N-i
J2-MOD (J,M)
Ji- (J-J2) /M
I I-I -J1+ML
JJ-1I2-J2+ML
J I=J +M-ML
J2-J2+M-MLI
PHI(IN,JN)-ARGM(II,JJ)-ARGM(I1,12)*CONJG(ARGM4(JI,J2))
PHI (JN,IN)-CONJG (PHI (INJN))55 COTINU

55 CONTINUE
C
C COM4PUTE LAST ROW OF COVARIANCE MATRIX

C
DBAR-O .0
DO 70 1-3,N2
DBAR-DBAR+DTIL (I)I

70 CONTINUE
DBAR-DBAR/FLOAT (N-4)

DO 90 IN-1,MM

12-MOD(I,M)
Ii 1- -12) /M-ML
12-12 -ML
PHI (M1,IN)-CMPLX(o.O,0.O)
DO 80 K-3,N2
ARG-TWOPI* (FLOAT(I 1) *RANKX (K)+FLOAT(12)*RANKY (K))*DENOM j
ZARG-CMPLX (0.0,ARG)
PHI (M1,IN)-PHI (M1,IN)+DTIL(K)*CoNJG(CEXP(ZARG))

80 CONTINUE
PHI (Ml, IN)-PHI (Ml, IN)/FLOAT(N-l.)-DBAR*CONJG(ARGM(I 1+M, 12+M))j
PHI (IN,M1)-CONJG(PHI (M1,IN))

90 CONTINUE
PHI (Ml ,Ml) O.0
DO 100 K-3,N2
PHI (Ml,M1)-PHI (M1,M1)+DTIL(K)*DTIL(K)

100 CONTINUE I
PH I (M 1 ,M1) -PH I (Ml ,M 1) /FLOAT (N -4)-DBAR*DBAR

C
C CALL ROUTINE CPTENT TO COMPUTE AND PLOT CRITERION FUNCTIONS AND

C DETERMINE BEST AND SECOND BEST MODELS FOR D(U1,U2)
C

CALL CPTENT(RANKX,RANKY,N,M,PJ,IORD,IND,C OF,IENT,HD)

C COMPUTE UNIVARIATE DENSITY ESTIMATES USING AUTOREGRESSIVE
C TECHNIQUE3

WRITE (6.13.)
131. FORMAT(1H1)

71I
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CALL AUTDEN(X,N,IDQX,IPLT2,MORD,ALPHX,RVARXPSIGX.NVXo,4H X
WRITE (6,134)
CALL AUTDEN(Y,N.IDQY,IPLT2,MORD,ALPHY,RVARY,SIGY,NVY,1,4H Y
WRITE (6,134)
WRITE(6,135) NVX,NVY

135 FORMAT(/,IOX,'UNIVARIATE BEST ORDERS: NVX -',13,', NVY -',I3)
DO 260 ITLR-1,3
PS 1-0.0
ENT-O .0
WRITE (6,136)

136 FORMAT(/,19X,'Ul',17X.'U2'.15X,'DQHT',15X,'DHAT',/,2X,
+19(4H ---- ))
DO 220 1-1,40
DO 220 J-),40
U1-FLOAT(I)/41.
UZ-FLOAT (J) /41.

C COMPUTE VALUES OF UNIVARIATE DENSITY-QUANTILE FUNCTIONS

FQX-1 .0
IF (NVX.GT.O) FQX-AREST(UI,NVX,RVARX,ALPHX)
FQX-FQFNC (U], IDQX) /(FQX*SIGX)
FQY-1 .0I IF (NVY.GT.O) FQY-AREST(U2,NVY,RVARY,ALPHY)
FQY-FQFNC (U2 *I DQY)/ (FQY*S IGY)

C COMPUTE BIVARIATE DENSITY QUANTILE BY FORMING PRODUCT
C OF DEPENDENCE DENSITY AND AUTOREGRESSIVE ESTIMATORS

I LGDHAT-O.O
KP-MENTO(TER)
LOC-1I IF (ITER.EQ.2) LOC-MENT(1)+l
IF(ITER.EQ.3) LOC-MENT(1)+MENT(2)+]
DO 200 K-1,KP
I I-IND(LOC)-1

12-MOD(11I,M)
I 1-(I I-12)/M-ML
12- 12-MLI ARG'.TWOPI*(FLOAT( 1) *Ul+FLOAT(12)*U2)
ZARG-CMPLX (0,ARG)
LGDHAT-LGDHAT4REAL (COF (LOC) *CEXP (ZARG)).3 LDCvLOC+1

200 CONTINUE
IF (LGDI4AT.GT.170.) RETURN
IF (LGDHAT.LT.-20.) LGDHAT--20.

DHAT-EXP (LGDHAT)
ENT-ENT- LGDIIAT*DHAT
PSI-PS I+DI4AT
DQHT-OHAT*F QX *FQY
WRITE(ITER,210) UJU2,DQIT.DI4AT

210 FORMAT(2X,i.F19.10)
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IMOD-MD(1,8
IMOD-MOD (1,8)

IF((IMO0D.EQ.O).AND.(JMOD.EQ.O)) WRITE(6,210) U1,U2,DQHT,DHAT
C
220 CONTINUE

PSi-PSI/i681 .0I
ENT-ENT/1681 .0
HO (ITER)-ENT/PSI+ALOG (Psi)
WRITE (6,224)

224 FORMAT(//,IOX,20(4H----)I)
WRITE(6,225) IMENT(ITER),PSI

225 FORMAT(/,IoXINTEGRATING FACTOR FOR ORDER ',13,' IS -,FIO.4)
WRITE (6,230)I

230 FORMAT(//,10X,'COEFFICIENTS FOR BIVARIATE DEPENDENCE DENSITY',

+//,12X,'NUl',2X,'NU2',2X,' REAL(COF) IMAG(COF)',/,JOX,32(JH-))
LOC-1
IF(ITER.EQ.2) LOC=MENT(1)+1
IF(ITER.EQ.3) LCeC-MENT(1)+MENT(2)+1
DO 250 I-1,KP

I IIND(LOC)-1
I 2-MOO (I I AM
I)-(I I-12)/M-ML
12-12-MLj
WRITE(6,240) I1,12,COF(LOC)

240 FORPMATOi0X,215,2FIO.4
LOC-LOC+ 1

250 CONTINUE
WRITE (6,224)

260 CONTINUE
RETURNI
END
SUBROUTINE CPTENT(RANKXRANKY,N,M,PHI, lORD, IND,COF.M4ENT,HD)

C
C SUBPROGRAM TO COMPUTE AND PLOT ENTROPY OF D-HAT.
C THIS SUBROUTINE WILL ALSO COMPUTE THE CRITERION FUNCTION
C AIC AND PRINT THE SMALLEST TWO RELATIVE MINIMA.
C COEFFICIENTS FOR THE THREE ORDERS SPECIFIED IN MENT
C WILL BE RETURNED IN COF WITH THE CORRESPONDING INDICES
C IN IND.
C
C INPUT: N,M - SAMPLE SIZE, UNIVARIATE MAXIMUM ORDER (M**2

CUSED FOR BIVARIATE MAX ORDER)U
C RANKX,RANKY - VECTORS OF RANKS AND CO-RANKS
C PHI - COVARIANCE MATRIX
C lORD - VECTOR OF ORDERED INDICES FOR SEQUENTIAL REGRESSION
CI
C AUXILLIARY: NVAR,RVAR,DEST - VECTORS AND MATRIX
C FROM4 ROUTINE CSQREG
CI
C OUTPUT: COF,IND - SEE ABOVE
CI
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C SUBROUTINES CALLED: PLOTXY, FTERP,MI NMAX,RELMAIN,MIN,CSQREG,CSWEEP

C

* DIMENSION RANKX(N),RANKY(N),AIC(50),
I ~+MENT (3), IND (97),ND (4)

DIMENSION IORD(49) ,NVAR (49), INDV(1225) ,RVAR (49)
COMPLEX PHI (50,50) ,COF (97) ,BEST (1225)
REAL LGDHAT

MMI-MM

L-MOD (M,2)I ML- (M-L)/2
TWOPI-8.O*ATAN (1.0)

CI C CALL ROUTINE CSQREG TO PERFORM SEQUENTIAL REGRESSION ON PHI1
C

CALL CSQREG(PHI,50,MM,IORD,BEST,INDV,1225,RVAR,NVARNIVN)
CALL CLPLTI (RVAR,NIVN,1,4NRVAR,41,I)
NVI-N IVN+1

C
3C COMPUTE AIC CRITERION FUNCTION
U C

AJIC 00--1 ./FLOAT (N)
AIC (2) -ALOG (RVAR(1))+2.0/FLOAT (N)I £00 30 I-2.NIVN
AIC(I+i)WALOG(RVAR(l))+2.*FLOAT(I)/FLOAT(N)

30 CONTINUE
DEC-I .0/FLOAT (N)

WRITE (6,40)
40 FORMAT(/,IOX,-OUTPUT FROM RELMIN FOR ORDER DETERMINING '

* +'CRITERION. (SUBTRACT ONE FOR TRUE ORDER)',/)
3 CALL RELMIN(AIC,NV].DEC,MIN,MIN2,44 AIC)

AI Ni-MI NI-I
MIN2-MIN2-)
WRITE(6,50) MINJ,MIN2

50 FORMAT(/,,IOX,'BEST ORDER BY AIC -'.13,/,IOX,12ND BEST ORDER ,.

+'BY AIC -',13,/)
CIC COMPUTE ENTROPY M4EASURE FOR EACH ORDER
CI LOC-l

00 180 1-1,3
K-M4ENT (1)
IF(K.EQ.0) GO TO 180

K1-NVAR (K)
D0 170 KK-1,K
IWNO (LOC)rI NOV (K 1)I COF (LOC) -BEST (1()
K1-Ki+i
LOC-LOC+I
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170 CONTINUE
i80 CONTINUE

ERETURN I
END

I
I
I
I
]
I

Is
I.
I.
U.
I
1

AI
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APPENDIX C

C.) Subprogram CSQREG

SUBROUTINE CSQREG(A,NDIM,NIV, IORD,BEST, INDV,MDIM,RVAR,NVAR,NIVN)

C
C SUBPROGRAM TO PERFORM SEQUENTIAL REGRESSION USING COVARIANCE
C OR CORRELATION MATRIX A(NIV+I,NIV+I).
C
C INPUT: A - COVARIANCE MATRIX (COMPLEX)
C NDIM - ROW DIMENSION OF A IN CALLING PROGRAM
C NIV - NUMBER OF INDEPENDENT VARIABLES
C lORD - INTEGER VECTOR CONTAINING INDICES OF VARIABLES
C IN THE ORDER THEY ARE TO BE ENTERED INTO THE MODEL
C MDIM - DIMENSION OF BEST IN CALLING PROGRAM
C

j C OUTPUT: A - SWEPT COVARIANCE MATRIX
C BEST,INDV - VECTORS OF SUBSET INFORMATION
C BEST CONTAINS LEAST SQUARES PARAMETER ESTIMATES
C INDV CONTAINS VARIABLE INDICES
C RVAR - VECTOR OF RESIDUAL VARIANCES
C lORD - VECTOR CONTAINING INDICES OF VARIABLES IN ORDER
C THAT THEY WERE ENTERED WITH VALUES CAUSING
C SINGULARITIES IN A OMITTED
C NIVN - NUMBER OF INDEPENDENT VARIABLES INCLUDED IN
C ANALYSIS

C SUBPROGRAMS CALLED: CSWEEP
C

COMPLEX A(NDIM,NDIM),BEST(MDIM)
DIMENSION INDV(MDIM),IORD(NIV),RVAR(NIV),NVAR(NIV)
DATA TOL/I.E-20/
NV-NIV+1
NIVN-NIV
VAR-REAL (A (NV.NV))
LOC-1
LC2-1

~KOUNT-1

K-1I10 ID-IORD(K)
KOUNT-I(OUNT+ 1
TEST-REAL(A(ID, ID))**2+AIMAG(A(ID, ID))**2
IF(TEST.LE.TOL) GO TO 40
CALL CSWEEP(A,NDIM,NV, ID ID)
RVAR (K) -REAL (A (NV, NV))/VAR

!1
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DO 30 KX-I,K
KID-IORD(KK)
IF(KK.NE.1) GO TO 20
NVAR(LC2)-LOC
LC2-LC2+1

20 INDV(LOC)-KID
BEST(LOC)--A (NV,K ID)
LOC-LOC+1

30 CONTINUE
GO TO 60

40 NIVN-NIVN-1
DO 50 I-K,NIVN
IORD(I)-IORD (1+1) 1

50 CONTINUE
GO TO 10

60 K-K+1
IF(KOUNT.LE.NIV) GO TO 10
RETURN
END

C.2 Subprogram CSWEEP J

SUBROUTINE CSWEEP(A,NDIM,N.K1,K2) j
C SUBROUTINE TO SWEEP THE NXN COMPLEX MATRIX A ON ITS K)

C THRU K2 DIAGONAL ELEMENTS (SWP(K)SWP(K)A-A)
C
C INPUT
C A,N,K1,K2
C NDIM : ROW DIMENSION OF A IN CALLING PROGRAM

C OUTPUT :

C A
C
C SUBROUTINES CALLED : NONE
C

COMPLEX D,A(NDIM,NOIM)
DATA NOUT/6/

CC U
C FIX DIAGONAL K :
C

DO 50 K-K1,K2
C ili
C CHECK FOR ZERO
-C
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TEST-REAL (A(K,K))**2+AIMAG(A(K,K))**2
IF(TEST.LT.1.E-25) GO TO 99
D-1 ./A (K,K)
A(K,K)-I.

C
C KTH ROW:
C

DO 10 I-I,NI~0 A (K, I)-DtA (K, I)

C
00 20 J-1,N
IF(J.EQ.K) GO TO 20
A (J, K) -- A (J. K) *D

20  CONTINUE

CC OTHERS :

DO 40 J-1,N
IF(J.EQ.K) GO TO 4 0

DO 30 I-I,N
IF(I.EQ.K) GO TO 30
A(J, I)-A(J, I)+A(J,K)*A(K, I)/0

30 CONTINUE
40 CONTINUE

C

C

GO TO 110
99 WRITE(NOUT.100) K,KI,K2
100 FORMAT(IOX,12,15HTH DIAG OF FROM,1X,12,1X,2HTO,1X,

112,1X,17HIS ZERO IN CSWEEP)
110 RETURN

END

C.3 Subprogram AUTDEN

SUBROUTINE AUTDEN(WN,IDQH,IPLT2,MORD,ALPH,RVARWSIGO.NVW,
+I SORT,WLAB)

C
C THIS SUBPROGRAM COMPUTES A SMOOTHED DENSITY QUANTILE
C FUNCTION BASED ON THE AUTOREGRESSIVE METHOD OF PARZEN(1979).
C THIS ROUTINE IS BASED ONE THE ONESAM PROGRAM DENSITY ESTIMATION
C ROUTINE AND USES MANY OF THE SUBPROGRAMS OF ONESAM. SEE

K Ii m _
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I
C PARZEN AND ANDERSON (1980) FOR DOCUMENTATION.

C INPUT: W - RAW DATA
C N - SAMPLE SIZE
C IDQH - INDICATOR FOR NULL DIST. OF W
C ISORT - 0 IF W AND RANKW SORTED, 1 OTHERWISE.
C MORD - MAXIMUM ALLOWABLE ORDER (<-6)
C IPLT2 - 0--> NO PLOTS
C 1--> PLOT OF AR DENSITY-QUANTILE FUNCTION
C WLAB - VARIABLE NAME FOR W IN A4 FORMAT J
C
C OUTPUT: NVW - ORDER OF AUTOREGRESSIVE DENSITY ESTIMATOR
C ALPH - COEFFICIENTS FOR AUTOREGRESSIVE REPRESENTATION
C RVARW - RESIDUAL VARIANCE FOR BEST ORDER
C SIGO - INTEGRATING FACTOR (SIGMA-TILDA FOR NULL MODEL)
CJ
C SUBPROGRAMS CALL'D: ORD,QHLIN,QTOFQ,WSPACE,FORIER,AUTORG,PARZ,
C AREST,FQFNC,MDNRIS,QF IND,PLOTXY,FTERP,MINMAX,
C MIN,MAX

C

DIMENSION W(N),RVAR(5),U(500),QN(500),QL(500),FQ(500),
+WXS (500), CWXS (500), I LOC (5), T (500),CAT (5),WK 1 (500), WK2 (500) ID IMENS ION CAPT (20)

COMPLEX A(5) ,PHI (5) ,ALPH (5) ,ALPHA(15) ,RESVAR
DATA CAPT/4HUNIV,4HARIA,4HTE D,4HENSI ,4HTY-Q,4HUANT,4HILE

+4HFOR ,4HRAND,4HOM V,4HARIAI.HBLE ,8*4H I I
CAPT (13) -WLAB
WRITE(6,1) WL',B

1 FORMAT(//,1OX,'UNIVARIATE DENSITY ESTIMATION RESULTS FOR ',
+'VARIABLE ',A4,//)
DO 5 I"1,N
T (1) -W (1)

5 CONTINUE
N2-N+2
M-MORD+ 1
IF(M.GT.6) M-6 I
MM1-M-1
H-I ./FLOAT(N+I)
IF(H.LT.O.02) H-O.02 I
IF(ISORT.EQ.O) GO TO 10

CALL ORD(T,N)
10 CONTINUE

TMIN-T (1)
C
C COMPUTE N EQUALLY SPACED U VALUES. BETWEEN 0 AND 1 
C

DO 30 Jml,N
U (J+1) aFLOAT (J) *1H i

30 CONTINUE I

i I

.... i iI i . .. .... .. .... I . .... . . . . . . m i



251

C COMPUTE QUANTILE FUNCTION VIA LINEAR INTERPOLATION
C

CALL QHLIN(T,N,H,U,QNO,NQ,TMIN,TINT,N2,WK1,WK2)
C
C COMPUTE LITTLE Q AND FQ=1/(LITTLE Q)
C

NP 1-NQ
CALL QTOFQ(QNI.U,NP1,QL,FQ)

C COMPUTE WEIGHTED SPACINGS (LITTLE 0(U)) BASED ON IDQH DIST.
C

NP1-NQ+l
CALL WSPACE(WXS.CWXS,NP1,FQ,IDQHU,SIGO)

C
C COMPUTE FOURIER TRANSFORM OF WEIGHTED SPACINGS
C

CALL FORIER(WXS,U(2),NA,M)
C
C COMPUTE AUTOREGRESSIVE COEFFICIENTS FOR ORDERS I TO M
C

I1I-1
DO 100 K-i ,MMI
KP1-K+l
CALL AUTORG(A.KP1Si,ALPH,PHI ,RESVAR)
RVAR (K) -REAL (RE SVAR)I ILOC(K)-I I
DO 90 J-1,K
ALPHA0(0I-ALPH (J)

90 CONTINUE
100 CONTINUE

CALL PARZ (RVAR,M-1 ,N,CAT,NVW)I IF(NVW.EQ.O) GO TO 115
LOC-I LOC (NVW)

* DO 110 I-1.NVW

AIPH (l)-ALPHA (LOC)
LOC-LOC+ I

110 CONTINUE

115 CALL CLPLT1 (RVAR,M-1 ,1 ,iHRVAR,.41 1)

C COMPUTE UNIVARIATE DENSITY-QUANTILE AT 100 POINTS AND PLOT

WRITE(6,120) SIGO
120 FORMAT(/,1OX,'SIGO -',F1O.4)

RVARW-RVAR (NVW)
DO 160 1-1,100
U(i):FLOAT(I)/1O1 .0 >

IF(NVW.GT.0) FIAREST(U(I)NW,RVARW,ALPH)1 IF(FI.EQ.O.) Fl-H
FQ(I)-FQFNC(U(I) ,IDQNO/(FI*SIGO)1 '160 CONTINUE
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IF (IPLT2.EQ. 1)
+CALL PLOTXY(U,FQ,100,CAPT,4H U,4H FQ,1)
RETURN I
END

I
C.A Subprogram LEGP I

SUBROUTINE LEGP(N,P,IDEG)

C

C SUBROUTINE TO GENERATE 3XN MATRIX P OF COEFFICIENTS
C OF LEGENDRE POLYNOMIALS. ROW 3 CONTAINS COEFFICIENTS I
C FOR THE LEGENDRE POLYNOMIAL (OVER (-1,1)) OF
C DEGREE IDEG (DETERMINED BY SUBROUTINE AFTER INITIAL CALL)
C!
C INPUT: N - SAMPLE SIZE (OR HIGHEST ORDER DESIRED)
C IDEG - 0 --> FOR FIRST CALL
C ORDER OF POLYNOMIAL IN THIRD ROW FOR SUBSEQUENT
C CALLS (PROVIDED BY ROUTINE)
C
C OUTPUT: P - THE 3X% MATRIX OF LEGENDRE POLYNOMIAL
C COEFFICIENTS.
C
C ALGORITHM: THE SECOND ORDER RECURSION RELATION COMMONLY
C FOUND IN MOST TEXTBOOKS (SEE, E.G., CHURCHILL, I
C "SPECIAL FUNCTIONS")
C

C
DIMENSION P(3,N)
Ir(IDEG.NE.O) GO TO 30
DO 20 1-1,3 I
DO 10 J-1,N
P(I ,J)-O.O

10 CONTINUE i
20 CONTINUE

P(,1)-1.0
P(2,2)-1 .0 I
IDEG-2
GO TO 70

30 IDEG-IDEG+1
DO 60 J-I,IDEG
P (1,J) -P (2,J)

P (2, J) -P (3, J)
60 CONTINUE
70 CONTINUEA-(2.0*FLOAT(IDEG)-1.O)/FLOAT(IDEG)

I
-" - ; ., -" -,.-: -" - - _,_._

"  
_ _____T';__ _,_ _- - _ . . . .. -

==H
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B-FLOAT (IDEG-1)/FLOAT (IDEG)
I I-IDEG+1
DO 100 J-1,11
IF(J.GT.1) GO TO 80
P (3, 1) -- B*P(01, 1)
GO TO 100

80 P(3,J)-A*P(2,J-1)-B*P(1,J)
100 CONTINUE

RETURN
END



254

I
APPENDIX D 1

D.1 Subprogram PLOTXY

SUBROUTINE PLOTXY(X,Y,N,CAPT,NAMX,NAMY, IOPT)

C
C SUBROUTINE TO PRINT AND PRINTER PLOT THE N-VECTOR Y AS A
C FUNCTION OF X. 1
C
C INPUT : N,X,Y - X IS ORDERED ON INPUT AND Y(I)-Y(X(I))
C CAPT - LITERAL CONSTANT FOR TITLE OF PLOT IN 20A4 FORMAT
C NAMX,NAMY : 4 CHARACTER LITERAL CONSTANTS GIVING
C LABELS FOR X AND Y
C IOPT : 1,2 (POINT OR BAR PLOT)
C J
C SUBROUTINES CALLED : FTERP,MAX,MIN
C

C
DIMENSION X(N),Y(N),T(46),YI(46),CAPT(20),AL(1O1)
DATA NOUT/6/
DATA BLANK,DOT,Z,SL,PLUS/IH ,IH.,1H*,]HI,IH+/

MM-81
IOPTY-O
IF(N.GT.19) GO TO IT
WRITE(NOUT,1O) N

10 FORMAT(IOX,'SAMPLE SIZE OF ',12,' IS TOO SMALL TO PERFORM 'i
+'INTERPOLATION IN PLOTXY.')
GO TO 100

11 CONTINUE
WRITE(NOUT,13) CAPT

13 FORMAT(]H1,33X,2OA4,/)
C
C CREATE T VECTOR OF EQUALLY SPACED X AND INTERPOLATE TO OBTAIN
C CORRESPONDING Y VALUES
C

DEC- (X (N) -X (1))/45.0
DO 15 1-1,46
T(I)-X (I)+FLOAT(I-1) *DEC

15 CONTINUE
CALL FTERP(X,Y,TYI,N,46)

C
C INITIALIZE AL
C

ON-(AM-) /2
DO 20 J-I,MM 11

VI)! '
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20 AL(J)-DOT
WRITE(NOUT,25) NAMX,NAMY, (AL(J) ,J-1,MM)

25 FORMAT(/,16x,A4,6x,A4/OX,20(IH-),2X,10IA1)
DO 30 Jfr1,MM

30 AL(J)-BLANKI, AL(1-SL
AL (MM) =SL

C
C FIND MiAX AND MINI C

CALL MAX(YI,46.YMAX,IND)
CALL MIN(YI,46,%MIN,IND)I RY-1 .2* (YMAX-YMIN)
IF(RY.LT.I.E-20) IDPTY-l

C
C PLOT:

00 40 J-1,46
IF(IOPTY.EQ.1) GO TO 36
C I -(Y I (J) -YMI N) /RY

GO TO 37I36 ci-o.
37 Ku-ON* (C I+I.) +2. 5

AL (K) uZ
IF(IOPT.EQ.1) GO TO 35
DO 39 1-1,K

39 AL(I)-Z
135 CONTINUE
U ~WRITE (NOUT,3L) T(J) ,YI (J) ,(AL(I) , I-1,M)

38 FORMAT(10X,F0I.4,1X,F9.I.,2X,1O1A1)
I ALW()-BLANK3 IF(IOPT.EQ.1) GO TO 40

DO 41 1-2,K
41 AL(I)-BLANK
40 CONTINUE

00 50 1-1,Mi
50 AL(I)-DOT

AL (1)-PLUS
U AL (MM)-PLUS

WRITE(NOUT,6o) (AL(I),I-1,MM)
60 FORMAT(1OX,2O(lH-),2X,lolAl)

CI C 7
VtA X-RY+YM IN
WRITE(NOUT,70) YMIN,YMAX

I' END
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0.2 Subprogram PLTXYZ

I
SUBROUTINE PLTXYZ(X,Y,Z,N,CAPT,NAMXNAMY,NAMZ,XISE,XMAXD,XMSE)

C
C SUBROUTINE TO PRINT AND PRINTER PLOT THE N-VECTORS Y AND Z AS
C A FUNCTION OF X ON THE SAME COORDINATE SYSTEM.
C J
C INPUT : N,X,Y,Z - X IS ORDERED ON INPUT AND Y(I)-Y(X(I)),ETC.

C CAPT - LITERAL CONSTANT FOR TITLE OF PLOT IN 20A4 FORMAT
C NAMX,NAMY,NAMZ 4 CHARACTER LITERAL CONSTANTS GIVING J
C LABELS FOR X, Y, AND Z
C XISE,XMAXD,XMSE - SQUARED ERROR DIAGNOSTICS

C SUBROUTINES CALLED : FTERP,MAX,MIN
C

DIMENSION X(N),Y(N),Z(N),T(46),YI(46),ZIQ(6),CAPT(20),AL(1O)

DATA NOUT/6/
DATA BLANKDOT,STAR,SL,PLUS/IH ,)H.,)H*,IHI,IH+/ -
DATA SM,SO/1HM, lHO/

C

IOPTY-O
IF(N.GT.19) GO TO 1
WRITE(NOUT,IO) N

10 FORMAT(IOX.'SARPLE SIZE OF ',12,1 IS TOO SMALL TO PERFORM ,

+'INTERPOLATION IN PLTXYZ.')
GO TO 100

11 CONTINUE

WRITE(6,13) XISE,XMAXD,XMSE
13 FORMAT(IHI,9X,85(1H-),/JOX,'' INTEGRATED SQUARE ERROR -',E1O.4,

+5X,'MAXIMUM ABSOLUTE DIFFERENCE -',E1O.4,' I',/,IOX,'l MEAN ',
+'SQUARE ERROR -',ElO.4,52X,I'/,1OX85(1H-) I

C
C CREATE T VECTOR OF EQUALLY SPACED X AND INTERPOLATE TO OBTAIN
C CORRESPONDING Y AND Z VALUES I
C

DEC-(X(N)-X(1))/45.0
DO 15 1-1,46 1
T(I)-X(1)+FLOAT(I-1)*DEC

15 CONTINUE
CALL FTERP(X,Y,T,YIN,6)
CALL FTERP(X,Z,T,ZI,N,6)

C
C INITIALIZE AL
C

ON= -14)/2

DO 20 J-I,MM I
Im

ii~ - _ __ _ ___ ___
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20 AL (J) -DOT
AWR ITE (NOUT, 25) NAMX, NAMY, NAMiZ, (AL W.) , J- 1,MM)

1 25 FORMAT(/,i6X,A4,4X,2H*-,A4,4X,24O-,A4I0X,30(I.I),2X,101A)

30 AL(J-BLANK
AL (l)-SL
A L (MMt) -S L

C
C FIND MiAX AND MINI C

CALL MAX(YI,J.6,YMAX,IND)
CALL MIN(YI,46,YMIN,IND)I CALL MAX (ZI ,46,ZMAX, IND)
CALL MIN(ZI,46,ZMIN,IND)
IF(ZMIN.LT.YMIN) YMIN-ZMIN
IF (ZMAX.GT.YMAX) YMAX-ZMAX
RY-1 .2*(YMAX-YMiIN)
IF(RY.LT.I.E-20) IOPTY-)

CI C PLOT:
C

DO 40 J-1,46
IF(IOPTY.EQ.1) GO TO 36
Cl-(YI (J)-YMIN)/RY
C1-2.*(CI-.5)
C2-(ZI (J)-YMIN)/RYI C2-2.*(C2-.5)
GO TO 37

36 ci-o.
C2-0.

37 KY-ON*(Cl+1 .)i-2.5
KZ-ON* (C2+1 .)+2.5
AL (KY) -STAR
AL (KZ) 50
IF (KY.EQ.KZ) AL(KY)-SM
WRITE(NOUT,38) T(J),YI(J),ZI(J),(AL(I),I-l,MM)

38 FORMAT(JOXF1O.4,JX,F9.I.,JXF9.4,2X,JOJA1)
AL (KY) -BLANK

* AL (KZ) -BLANK
*40 CONTINUE

DO 50 Iml,MM
50 AL(I-DOT

AL (1)-PLUS
AL(MM)-PLUS
WRITE(NOUT,60) (AL(I)tI-1.MM)

1 60 FORMAT(1OX,3O(194-),2X,lOIAI)

YMAX-RY+YMI N
WRITE (NOUT,70) YJIIN,YAAX

70 FORMAT(37X.F1O.4,70X,F1O.4)
WRITE(NOUT,8O) CAPT
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80 FORMAT(/,1OX,2OA4,/)
100 CONTINUE

RETURN 1
END

1
D.3 Subprogram FTERP 1

SUBROUTINE FTERP(U,V,X,F,N,M)

C
C SUBROUTINE TO PERFORM LINEAR INTERPOLATION ON V TO

C OBTAIN F AT THE M X VALUES 1
C
C INPUT: U - VECTOR OF VALUES AT WHICH V EVALUATED
C V - FUNCTION VALUES TO INTERPOLATE
C X - VALUES AT WHICH INTERPOLATED FUNCTION TO BE I
C EVALUATED
C N - DIMENSION OF VECTORS U AND V
C M -DIMENSION OF VECTORS X AND F l
C
C NOTE: ALL ABSCISSA VECTORS MUST BE ORDERED
C
C OUTPUT: F - INTERPOLATED FUNCTIOi VALUES
C

DIMENSION U(N),V(N),X(M),F(M) J
IF(N.EQ.M) GO TO 100

DO 60 I-1,M
10 IF(X(I)-U(II))20,40,50
20 IF(II.NE.1) GO TO 30

F (1)-V(1)+(V(2)-V(1))*(X(1)-U(1))/(U(2)-U(1))
GO TO 60 I

30 F(I)mV(II-I)+(V(II)-V(II-1))*(X(I)-U(II-1))/(U(II)-U(II-1))
GO TO 60 i

40 F(1)-V(II) 
GO TO 60

50 11-11+1
IF(II.LT.N) GO TO 10
I I-N

GO TO 30
60 CONTINUE
100 RETURN

END I.

I. ,

• I I
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D.4 Subprogram SEDIAG

SUBROUTINE SEDIAG(F,G,N,RANGE,XISE,XMAXD,XMSE)

C
C SUBROUTINE TO COMPUTE VARIOUS SQUARED ERROR DIAGNOSTICSh C BY 'RAW' NUMERICAL INTEGRATION (RIEMANN SUMS).

_ C
C INPUT: F,G - VECTORS CONTAINING FUNCTION VALUES CORRESPONDING
C TO THE SAME ARGUMENT, I.E., F(I)-F(X(I))

I C CORRESPONDS TO G(I)-G(X(I)). F AND G MUST HAVE
C BEEN EVALUATED AT EQUALLY SPACED X VALUES.
C N - DIMENSION OF F AND G
C RANGE - RANGE OF X VALUES OVER WHICH F AND G ARE
C COMPUTED.
C
C OUTPUT: XISE - INTEGRATED SQUARED ERROR
C XMAXD - MAXIMUM ABSOLUTE DIFFERENCE BETWEEN F AND G
C XMSE - MEAN SQUARED ERROR ASSUMING EXPECTATION TAKEN
C WITH RESPECT TO F.
C

DIMENSION F(N),G(N)
XMAXD-O.0
XISE-O.O
XASE-0.O

DO 10 I-1.N
I DIF-(F (I)-G(I))*(F (I)-G(I))

IF(XMAXD.LT.DIF) XMAXD-DIF
XISE-XISE+DIF
XMSE-XMSE+DIF*F(I)

10 CONTINUE
XMAXD-SQRT(XMAXD)

3 XISE-XISERANGE/FLOAT(N)
XMSE-XMSE*RANGE/FLOAT(N)

RETURN
END

II,
I

, !~
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